REMOCIÓN DE MERCURIO POR Phragmites australis EMPLEADA COMO BARRERA BIOLÓGICA EN HUMEDALES ARTIFICIALES INOCULADOS CON CEPAS TOLERANTES A METALES PESADOS
暂无分享,去创建一个
Leonel Ernesto Amabilis-Sosa | Gabriela Moeller-Chávez | Christina Siebe | María del Carmen Durán-Domínguez-de-Bazúa | Gabriela Moeller-Chavez | C. Siebe | María del Carmen Durán-Domínguez-de-Bazúa | L. E. Amábilis-Sosa
[1] M. Lominchar,et al. Accumulation of mercury in Typha domingensis under field conditions. , 2015, Chemosphere.
[2] Fenglian Fu,et al. Removal of heavy metal ions from wastewaters: a review. , 2011, Journal of environmental management.
[3] M. Goodsite,et al. Environmental costs of mercury pollution. , 2006, The Science of the total environment.
[4] Y. Li,et al. Removal of Mercury from Chloralkali Electrolysis Wastewater by a Mercury-Resistant Pseudomonas putidaStrain , 1999, Applied and Environmental Microbiology.
[5] E. Feldberg,et al. Mutagenic effects of mercury pollution as revealed by micronucleus test on three Amazonian fish species. , 2005, Environmental research.
[6] María del Carmen Durán-Domínguez-de-Bazúa,et al. Interacción de aislados bacterianos rizosféricos con metales de importancia ambiental , 2012 .
[7] Andrew Wood,et al. Constructed wetlands in water pollution control: Fundamentals to their understanding , 1995 .
[8] M. Pacheco,et al. Salt marsh macrophyte Phragmites australis strategies assessment for its dominance in mercury-contaminated coastal lagoon (Ria de Aveiro, Portugal) , 2012, Environmental Science and Pollution Research.
[9] P Kuschk,et al. Effects of plants and microorganisms in constructed wetlands for wastewater treatment. , 2003, Biotechnology advances.
[10] D Goetz,et al. The impact of sewage composition on the soil clogging phenomena of vertical flow constructed wetlands. , 2003, Water science and technology : a journal of the International Association on Water Pollution Research.
[11] J. Weis,et al. Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. , 2004, Environment international.
[12] Thomas R. Dulski,et al. A manual for the chemical analysis of metals , 1996 .
[13] Shuiping Cheng,et al. Efficiency of constructed wetlands in decontamination of water polluted by heavy metals , 2002 .
[14] Comisión Nacional del Agua. Estadísticas del agua en México (Edición 2010) , 2011 .
[15] L. Lacerda,et al. MERCURY SPECIATION AND DISSOLVED ORGANIC CARBON CHARACTERIZATION IN THE SURFACE WATERS OF SEPETIBA BAY, SE BRAZIL , 2004 .
[16] M. V. Mier,et al. Nitrogen and potassium variation on contaminant removal for a vertical subsurface flow lab scale constructed wetland. , 2011, Bioresource Technology.
[17] Robert P. Mason,et al. Mercury and methylmercury transport through an urban watershed , 1998 .
[18] A. Sheoran,et al. Heavy metal removal mechanism of acid mine drainage in wetlands: A critical review , 2006 .
[19] S. Clemens. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. , 2006, Biochimie.
[20] Otilio A. Acevedo-Sandoval,et al. CONTENIDO Y TRASLOCACIÓN DE PLOMO EN AVENA (Avena sativa, L.) Y HABA (Vicia faba, L.) DE UN SUELO CONTAMINADO , 2011 .
[21] L. Silveira,et al. Colour vision and contrast sensitivity losses of mercury intoxicated industry workers in Brazil. , 2005, Environmental toxicology and pharmacology.
[22] I. Thornton,et al. Trace Elements in Soils and Plants , 1980 .
[23] Jan Vymazal,et al. Wastewater Treatment, Plant Dynamics and Management in Constructed and Natural Wetlands , 2008 .
[24] Nicola Pirrone,et al. Dynamics of mercury pollution on regional and global scales , 2005 .
[25] Archana Sharma,et al. Mercury toxicity in plants , 2000, The Botanical Review.
[26] T. Akar,et al. Biosorption applications of modified fungal biomass for decolorization of Reactive Red 2 contaminated solutions: batch and dynamic flow mode studies. , 2010, Bioresource technology.
[27] D. Leduc,et al. Phytoremediation of toxic trace elements in soil and water , 2005, Journal of Industrial Microbiology and Biotechnology.
[28] N. Terry,et al. Rhizosphere bacteria enhance the accumulation of selenium and mercury in wetland plants , 1999, Planta.
[29] A. Kabata-Pendias. Trace elements in soils and plants , 1984 .
[30] M. Palmgren,et al. A long way ahead: understanding and engineering plant metal accumulation. , 2002, Trends in plant science.
[31] I. H. Rorison,et al. Chemical Analysis of Ecological Materials. , 1974 .
[32] M. Parsek,et al. Heavy Metal Resistance of Biofilm and Planktonic Pseudomonas aeruginosa , 2003, Applied and Environmental Microbiology.
[33] Mingliang Zhang,et al. Adsorption study of Pb(II), Cu(II) and Zn(II) from simulated acid mine drainage using dairy manure compost , 2011 .
[34] Alexandros Stefanakis,et al. Vertical Flow Constructed Wetlands: Eco-engineering Systems for Wastewater and Sludge Treatment , 2014 .