Modeling of oak pollen dispersal on the landscape level with a mesoscale atmospheric model

We present the extension and application of the mesoscale atmospheric meteorology model METRAS for dispersion of oak pollen. We incorporated functions for pollen emission, pollen viability and pollen deposition into METRAS and simulated pollen dispersal on a scale of up to 200 km. The basis of the simulations is a real landscape structure that includes topography, land use, and the location and size of oak stands. We simulated the oak pollen dispersion of one single oak stand with an estimated annual pollen production of 1 billion pollen grains/m2 forest surface on two exemplary days of the flowering season in 2000. Depending on the meteorological situation of the simulated days, a pollen cloud with about 10 pollen/m3 may extend up to 30 km from the source. Downstream of the oak stand, approximately 1,000 pollen/m2 deposited up to a distance of 25 km, and lower amounts of pollen deposited up to 100 km away. These values of pollen concentration and deposition lay within the range of published field studies. Overall, it is shown that mesoscale atmospheric models are applicable to simulate pollen dispersal on the landscape level.

[1]  A. Mosseler,et al.  Challenges and opportunities for conservation of forest genetic resources , 2001, Euphytica.

[2]  B. Degen,et al.  Comparative study of genetic variation and differentiation of two pedunculate oak (Quercus robur) stands using microsatellite and allozyme loci , 1999, Heredity.

[3]  Gerald Müller,et al.  Atmosphere–Sea Ice Interactions during a Cyclone Passage Investigated by Using Model Simulations and Measurements , 2005 .

[4]  K. Schlünzen,et al.  Modification of dry deposition in a developing sea-breeze circulation—A numerical case study , 1992 .

[5]  P. Smouse,et al.  TWO‐GENERATION ANALYSIS OF POLLEN FLOW ACROSS A LANDSCAPE. I. MALE GAMETE HETEROGENEITY AMONG FEMALES , 2001, Evolution; international journal of organic evolution.

[6]  Helmut Rempe Untersuchungen über die Verbreitung des Blütenstaubes durch die Luftströmungen , 1937, Planta.

[7]  J. Bousquet,et al.  European allergy white paper: allergic diseases as a public health problem in Europe , 1997 .

[8]  G. Giddings Modelling the spread of pollen from Lolium perenne. The implications for the release of wind-pollinated transgenics , 2000, Theoretical and Applied Genetics.

[9]  Michael Schatzmann,et al.  Flow and Transport in the Obstacle Layer: First Results of the Micro-Scale Model MITRAS , 2003 .

[10]  J. G. Bartzis,et al.  An inter-comparison exercise of mesoscale flow models applied to an ideal case simulation , 2003 .

[11]  T. Pohlmann,et al.  The atmospheric impact on fluxes of nitrogen, POPs and energy in the German Bight , 1999 .

[12]  K. Salzen,et al.  Simulation of the dynamics and composition of secondary and marine inorganic aerosols in the coastal atmosphere , 1999 .

[13]  M. D. Loveless,et al.  ECOLOGICAL DETERMINANTS OF GENETIC STRUCTURE IN PLANT POPULATIONS , 1984 .

[14]  U. Niemeier,et al.  Atmospheric input of lead into the German Bight - a high resolution measurement and model case study , 1997 .

[15]  F. Austerlitz,et al.  Modelling the impact of colonisation on genetic diversity and differentiation of forest trees: interaction of life cycle, pollen flow and seed long-distance dispersal , 2003, Heredity.

[16]  A. Kremer,et al.  Comparison of microsatellites and amplified fragment length polymorphism markers for parentage analysis , 2000, Molecular ecology.

[17]  C. Walter,et al.  Plantation forest biotechnology for the 21st century. , 2004 .

[18]  G. S. Raynor,et al.  Mesoscale Transport and Dispersion of Airborne Pollens , 1974 .

[19]  S. Kawashima,et al.  Modelling and simulation of mesoscale dispersion processes for airborne cedar pollen , 1995 .

[20]  A. Mangin,et al.  An automated system for surveying and forecasting Olea pollen dispersion , 2002 .

[21]  H. Tauber A STATIC NON‐OVERLOAD POLLEN COLLECTOR , 1974 .

[22]  K. H. Schlünzen,et al.  Application of the concept of blending height to the calculation of surface fluxes in a mesoscale model , 1996 .

[23]  John L. Monteith,et al.  Vegetation and the atmosphere , 1975 .

[24]  B. Vogel,et al.  Numerical modelling of pollen dispersion on the regional scale , 2004 .

[25]  P. Gouyon,et al.  CORN POLLEN DISPERSAL: QUASI‐MECHANISTIC MODELS AND FIELD EXPERIMENTS , 2003 .

[26]  N. R. Sackville Hamilton,et al.  The release of genetically modified grasses. Part 2: the influence of wind direction on pollen dispersal , 1997, Theoretical and Applied Genetics.

[27]  D. Aylor,et al.  Settling speed of corn (Zea mays) pollen , 2002 .

[28]  U. Niemeier,et al.  Modelling steep terrain influences on flow patterns at the isle of Helgoland , 1993 .

[29]  K. Heinke Schlünzen,et al.  Relevance of sub-grid-scale land-use effects for mesoscale models , 2003 .

[30]  D. Levin,et al.  Gene Flow in Seed Plants , 1974 .

[31]  S. Kawashima,et al.  An improved simulation of mesoscale dispersion of airborne cedar pollen using a flowering-time map , 1999 .

[32]  G. Sehmel Particle and gas dry deposition: A review , 1980 .

[33]  J. M. Hirst AN AUTOMATIC VOLUMETRIC SPORE TRAP , 1952 .

[34]  Ralf Seppelt,et al.  Spatially explicit modelling of transgenic maize pollen dispersal and cross-pollination. , 2003, Journal of theoretical biology.

[35]  K. H. Schluenzen Numerical studies on the inland penetration of sea breeze fronts at a coastline with tidally flooded mudflats , 1990 .

[36]  N. Ellstrand Gene flow by pollen: implications for plant conservation genetics , 1992 .

[37]  K. Schlunzen,et al.  THREE-DIMENSIONAL NUMERICAL SIMULATION OF THE MESOSCALE WIND STRUCTURE OVER SHANDONG PENINSULA , 2000 .

[38]  C. Lüpkes,et al.  Modelling the arctic convective boundary-layer with different turbulence parameterizations , 1996 .

[39]  M. Lyford,et al.  Pollen dispersal models in Quaternary plant ecology: Assumptions, parameters, and prescriptions , 2008, The Botanical Review.

[40]  K. Schlünzen,et al.  Viability and sunlight sensitivity of oak pollen and its implications for pollen-mediated gene flow , 2005, Trees.

[41]  B. D. Dow,et al.  High levels of gene flow in bur oak revealed by paternity analysis using microsatellites , 1998 .

[42]  K. Schlünzen Simulation of transport and chemical transformations in the atmospheric boundary layer: review on the past 20 years developments in science and practice , 2002 .

[43]  W. M. Sharp,et al.  FLOWERING AND FRUITING IN THE WHITE OAKS. I. STAMINATE FLOWERING THROUGH POLLEN DISPERSAL , 1961 .

[44]  M. Sofiev,et al.  An Approach to Simulation of Long-Range Atmospheric Transport of Natural Allergens: An Example of Birch Pollen , 2007 .

[45]  G. Grosse-Brauckmann Absolute jährliche Pollenniederschlagsmengen an verschiedenen Beobachtungsorten in der Bundesrepublik Deutschland1)1)Herrn Prof. Fritz Overbeck in Verehrung zum 80. Geburtstag gewidmet. , 1978 .

[46]  S. Strauss,et al.  Gene flow from tree plantations and implications for transgenic risk assessment. , 2004 .

[47]  Jane Norris-Hill The modelling of daily Poaceae pollen concentrations , 1995 .

[48]  H. Steinkellner,et al.  Pollen dispersal inferred from paternity analysis in a mixed oak stand of Quercus robur L. and Q. petraea (Matt.) Liebl. , 1999 .