Attraction of ambrosia beetles to ethanol baited traps in a Slovakian oak forest
暂无分享,去创建一个
A. Kunca | C. Nikolov | M. Zúbrik | J. Vakula | Andrej Gubka | T. Kimoto | J. Galko | M. Ostrihoň
[1] J. Turgeon,et al. Discovery of Trichoferus campestris (Coleoptera: Cerambycidae) in Ontario, Canada and first host record in North America , 2013, The Canadian Entomologist.
[2] K. NoseworthyMeghan,et al. Attraction of Monarthrum scutellare (Coleoptera: Curculionidae: Scolytinae) to hydroxy ketones and host volatiles , 2012 .
[3] Qing-He Zhang,et al. 2-methyl-3-buten-2-ol: a pheromone component of conifer bark beetles found in the bark of nonhost deciduous trees , 2012 .
[4] C. Ranger,et al. Species Dependent Influence of (—) -&agr;-Pinene on Attraction of Ambrosia Beetles (Coleoptera: Curculionidae: Scolytinae) to Ethanol-Baited Traps in Nursery Agroecosystems , 2011, Journal of economic entomology.
[5] J. Smith,et al. First records of the banded elm bark beetle, Scolytus schevyrewi Semenov (Coleoptera: Curculionidae: Scolytinae), in British Columbia , 2010 .
[6] L. Horowitz,et al. Observational constraints on the global atmospheric budget of ethanol , 2010 .
[7] C. Ranger,et al. Monitoring Flight Activity of Ambrosia Beetles in Ornamental Nurseries with Ethanol-Baited Traps: Influence of Trap Height on Captures , 2010 .
[8] C. Ranger,et al. Ability of stress‐related volatiles to attract and induce attacks by Xylosandrus germanus and other ambrosia beetles , 2010 .
[9] Daniel R. Miller,et al. Ethanol and (−)-α-Pinene: Attractant Kairomones for Bark and Ambrosia Beetles in the Southeastern US , 2009, Journal of Chemical Ecology.
[10] B. Rudolf,et al. World Map of the Köppen-Geiger climate classification updated , 2006 .
[11] D. Booth,et al. Ambrosia Beetle (Coleoptera: Scolytidae) Species, Flight, and Attack on Living Eastern Cottonwood Trees , 2005, Journal of economic entomology.
[12] C. Bouget,et al. Short‐term development of ambrosia and bark beetle assemblages following a windstorm in French broadleaved temperate forests , 2005 .
[13] Qing-He Zhang,et al. Enantiospecific Antennal Response of Bark Beetles to Spiroacetal (E)-Conophthorin , 2002, Journal of Chemical Ecology.
[14] C. Mannion,et al. Ambrosia Beetle (Coleoptera: Scolytidae) Species Attacking Chestnut and Captured in Ethanol-Baited Traps in Middle Tennessee , 2001 .
[15] M. Gilbert,et al. Spatial Distribution of Ambrosia-Beetle Catches: A Possibly Useful Knowledge to Improve Mass-Trapping , 2001 .
[16] R. Kelsey,et al. Attraction of Scolytus unispinosus bark beetles to ethanol in water-stressed Douglas-fir branches , 2001 .
[17] I. Valterová,et al. Volatiles released from oak, a host tree for the bark beetle Scolytus intricatus. , 2000, Biochemical systematics and ecology.
[18] M. Kalapanida,et al. Flight pattern of some Scolytidae attracted to flight barrier traps baited with ethanol in an oak forest in Greece , 1997, Anzeiger für Schädlingskunde, Pflanzenschutz, Umweltschutz.
[19] Å. Lindelöw,et al. Response on the ground of bark beetle and weevil species colonizing conifer stumps and roots to terpenes and ethanol , 1993, Journal of Chemical Ecology.
[20] J. McLean,et al. Flight and landing behavior ofTrypodendron lineatum (Coleoptera: Scolytidae) in response to different semiochemicals , 1990, Journal of Chemical Ecology.
[21] U. Kohnle,et al. Dosage response to ethanol mediates host selection by “secondary” bark beetles , 1986, Naturwissenschaften.
[22] B. S. Lindgren. A MULTIPLE FUNNEL TRAP FOR SCOLYTID BEETLES (COLEOPTERA) , 1983, The Canadian Entomologist.
[23] M. Montgomery,et al. Ethanol and other host-derived volatiles as attractants to beetles that bore into hardwoods , 1983, Journal of Chemical Ecology.
[24] R. Crawford,et al. TOLERANCE OF ANOXIA AND THE METABOLISM OF ETHANOL IN TREE ROOTS , 1977 .
[25] W. Kearby,et al. SEASONAL FLIGHT AND VERTICAL DISTRIBUTION OF SCOLYTIDAE ATTRACTED TO ETHANOL IN AN OAK-HICKORY FOREST IN MISSOURI , 1975, The Canadian Entomologist.
[26] H. A. Moeck. ETHANOL AS THE PRIMARY ATTRACTANT FOR THE AMBROSIA BEETLE TRYPODENDRON LINEATUM (COLEOPTERA: SCOLYTIDAE) , 1970, The Canadian Entomologist.
[27] R. Gara,et al. Identification of a primary attractant for Gnathotrichus sulcatus isolated from western hemlock logs. , 1970 .
[28] K. Graham. Anaerobic induction of primary chemical attractancy for ambrosia beetles , 1968 .
[29] B. Leibundgut. Observational Constraints , 2016 .
[30] I. Drobyshev,et al. Recent advances on oak decline in southern Sweden , 2010 .
[31] F. Lakatos,et al. Occurrence of the introduced Xylosandrus germanus (Blandford, 1894) in Hungary - a genetic evidence (Coleoptera: Scolytidae) , 2007 .
[32] T. Oszako,et al. Alien Invasive Species and International Trade , 2007 .
[33] J. Grégoire,et al. Bark and Wood Boring Insects in Living Trees in Europe, a Synthesis , 2004, Springer Netherlands.
[34] L. Humble. INVASIVE BARK AND WOOD-BORING BEETLES IN BRITISH COLUMBIA, CANADA , 2002 .
[35] E. Führer. Oak Decline in Central Europe : A Synopsis of Hypotheses , 1998 .
[36] E. Mani,et al. Attack of the bark beetle, Xyleborus dispar F., (Coleoptera: Scolytidae) in orchards and vineyards. Importance, biology, flight observations, control, development and use of an efficient ethanol trap. , 1992 .
[37] G. Kooyman. Tolerance to Anoxia , 1989 .
[38] Antonín Pfeffer. Kůrovcovití Scolytidae a jádrohlodovití Platypodidae , 1989 .
[39] Hannemann. W. SCHWENKE (Herausgeber): Die Forstschädlinge Europas. Ein Handbuch in fünf Bänden. Autorenkollektiv: Band 3. Schmetterlinge. 1978. VIII. 467 S., 244 Abb., Format 25.5 × 17 cm DM 355.— (Subskriptionspreis DM 296.—). Verlag PAUL PAREY Hamburg und Berlin , 1979 .
[40] R. Crawford,et al. Plant Life in Anaerobic Environments , 1978 .
[41] M. Cannell. Tree physiology and yield improvement , 1976 .