A review of single-source unsupervised domain adaptation

Domain adaptation has become a prominent problem setting in machine learning and related fields. This review asks the questions: when and how a classifier can learn from a source domain and generalize to a target domain. As for when, we review conditions that allow for cross-domain generalization error bounds. As for how, we present a categorization of approaches, divided into, what we refer to as, sample-based, feature-based and inference-based methods. Sample-based methods focus on weighting individual observations during training based on their importance to the target domain. Feature-based methods focus on mapping, projecting and representing features such that a source classifier performs well on the target domain and inference-based methods focus on alternative estimators, such as robust, minimax or Bayesian. Our categorization highlights recurring ideas and raises a number of questions important to further research.

[1]  D. Horvitz,et al.  A Generalization of Sampling Without Replacement from a Finite Universe , 1952 .

[2]  R. Fortet,et al.  Convergence de la répartition empirique vers la répartition théorique , 1953 .

[3]  Reuben Gronau,et al.  Wage Comparisons--A Selectivity Bias , 1974 .

[4]  W. G. Cochran,et al.  Controlling Bias in Observational Studies: A Review. , 1974 .

[5]  G. McLachlan Iterative Reclassification Procedure for Constructing An Asymptotically Optimal Rule of Allocation in Discriminant-Analysis , 1975 .

[6]  J. Heckman Sample Selection Bias as a Specification Error (with an Application to the Estimation of Labor Supply Functions) , 1977 .

[7]  H. White Consequences and Detection of Misspecified Nonlinear Regression Models , 1981 .

[8]  Angelo Melino,et al.  Testing for Sample Selection Bias , 1982 .

[9]  Lung-fei Lee Some Approaches to the Correction of Selectivity Bias , 1982 .

[10]  D. Rubin,et al.  Statistical Analysis with Missing Data , 1988 .

[11]  H. James VARIETIES OF SELECTION BIAS , 1990 .

[12]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[13]  Geoffrey E. Hinton,et al.  Autoencoders, Minimum Description Length and Helmholtz Free Energy , 1993, NIPS.

[14]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[15]  David H. Wolpert,et al.  The Lack of A Priori Distinctions Between Learning Algorithms , 1996, Neural Computation.

[16]  Bernhard Schölkopf,et al.  Kernel Principal Component Analysis , 1997, ICANN.

[17]  Mathukumalli Vidyasagar,et al.  A Theory of Learning and Generalization , 1997 .

[18]  A. Rukhin Bayes and Empirical Bayes Methods for Data Analysis , 1997 .

[19]  F. Vella Estimating Models with Sample Selection Bias: A Survey , 1998 .

[20]  H. Shimodaira,et al.  Improving predictive inference under covariate shift by weighting the log-likelihood function , 2000 .

[21]  W. Fleischhacker,et al.  Selection bias in clinical trials with antipsychotics. , 2000, Journal of clinical psychopharmacology.

[22]  Charles Elkan,et al.  The Foundations of Cost-Sensitive Learning , 2001, IJCAI.

[23]  Nitesh V. Chawla,et al.  SMOTE: Synthetic Minority Over-sampling Technique , 2002, J. Artif. Intell. Res..

[24]  Kai Ming Ting,et al.  A Study on the Effect of Class Distribution Using Cost-Sensitive Learning , 2002, Discovery Science.

[25]  Erik G. Miller A new class of entropy estimators for multi-dimensional densities , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[26]  Yudong D. He,et al.  Effects of atmospheric ozone on microarray data quality. , 2003, Analytical chemistry.

[27]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[28]  Taeho Jo,et al.  A Multiple Resampling Method for Learning from Imbalanced Data Sets , 2004, Comput. Intell..

[29]  Bianca Zadrozny,et al.  Learning and evaluating classifiers under sample selection bias , 2004, ICML.

[30]  Gerhard Widmer,et al.  Learning in the presence of concept drift and hidden contexts , 2004, Machine Learning.

[31]  Satoshi Kanazawa,et al.  General intelligence as a domain-specific adaptation. , 2004, Psychological review.

[32]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[33]  Masashi Sugiyama,et al.  Input-dependent estimation of generalization error under covariate shift , 2005 .

[34]  Tong Zhang,et al.  A Framework for Learning Predictive Structures from Multiple Tasks and Unlabeled Data , 2005, J. Mach. Learn. Res..

[35]  Hui Han,et al.  Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning , 2005, ICIC.

[36]  Thomas G. Dietterich,et al.  To transfer or not to transfer , 2005, NIPS 2005.

[37]  Stuart Barber,et al.  All of Statistics: a Concise Course in Statistical Inference , 2005 .

[38]  Klaus-Robert Müller,et al.  Model Selection Under Covariate Shift , 2005, ICANN.

[39]  Rajat Raina,et al.  Constructing informative priors using transfer learning , 2006, ICML.

[40]  J. Robins,et al.  Estimating causal effects from epidemiological data , 2006, Journal of Epidemiology and Community Health.

[41]  Michael Evans,et al.  Checking for prior-data conflict , 2006 .

[42]  Koby Crammer,et al.  Analysis of Representations for Domain Adaptation , 2006, NIPS.

[43]  Bernhard Schölkopf,et al.  A Kernel Method for the Two-Sample-Problem , 2006, NIPS.

[44]  John Blitzer,et al.  Domain Adaptation with Structural Correspondence Learning , 2006, EMNLP.

[45]  Hans-Peter Kriegel,et al.  Integrating structured biological data by Kernel Maximum Mean Discrepancy , 2006, ISMB.

[46]  Bernhard Schölkopf,et al.  Correcting Sample Selection Bias by Unlabeled Data , 2006, NIPS.

[47]  François Laviolette,et al.  A PAC-Bayes Risk Bound for General Loss Functions , 2006, NIPS.

[48]  M. M. Hassan Mahmud On Universal Transfer Learning , 2007, ALT.

[49]  Motoaki Kawanabe,et al.  Direct Importance Estimation with Model Selection and Its Application to Covariate Shift Adaptation , 2007, NIPS.

[50]  Le Song,et al.  A Hilbert Space Embedding for Distributions , 2007, Discovery Science.

[51]  Klaus-Robert Müller,et al.  Covariate Shift Adaptation by Importance Weighted Cross Validation , 2007, J. Mach. Learn. Res..

[52]  Cheng Li,et al.  Adjusting batch effects in microarray expression data using empirical Bayes methods. , 2007, Biostatistics.

[53]  Xiao Li,et al.  A Bayesian Divergence Prior for Classiffier Adaptation , 2007, AISTATS.

[54]  Ramesh Nallapati,et al.  A Comparative Study of Methods for Transductive Transfer Learning , 2007, Seventh IEEE International Conference on Data Mining Workshops (ICDMW 2007).

[55]  John Blitzer,et al.  Biographies, Bollywood, Boom-boxes and Blenders: Domain Adaptation for Sentiment Classification , 2007, ACL.

[56]  Koby Crammer,et al.  Learning Bounds for Domain Adaptation , 2007, NIPS.

[57]  Steffen Bickel,et al.  Discriminative learning for differing training and test distributions , 2007, ICML '07.

[58]  Manuel A. Sánchez-Montañés,et al.  A New Learning Strategy for Classification Problems with Different Training and Test Distributions , 2007, IWANN.

[59]  Nicolas Bousquet,et al.  Diagnostics of prior-data agreement in applied Bayesian analysis , 2008 .

[60]  Takafumi Kanamori,et al.  Efficient Direct Density Ratio Estimation for Non-stationarity Adaptation and Outlier Detection , 2008, NIPS.

[61]  Qiang Yang,et al.  Transfer Learning via Dimensionality Reduction , 2008, AAAI.

[62]  Clifford R. Jack,et al.  Interpreting scan data acquired from multiple scanners: A study with Alzheimer's disease , 2008, NeuroImage.

[63]  Zaher Dawy,et al.  A new multitask learning method for multiorganism gene network estimation , 2008, 2008 IEEE International Symposium on Information Theory.

[64]  Mehryar Mohri,et al.  Sample Selection Bias Correction Theory , 2008, ALT.

[65]  Masashi Sugiyama,et al.  Direct Density Ratio Estimation for Large-scale Covariate Shift Adaptation , 2008, SDM.

[66]  Gunnar Rätsch,et al.  An Empirical Analysis of Domain Adaptation Algorithms for Genomic Sequence Analysis , 2008, NIPS.

[67]  Shie Mannor,et al.  Robustness and Regularization of Support Vector Machines , 2008, J. Mach. Learn. Res..

[68]  Yishay Mansour,et al.  Multiple Source Adaptation and the Rényi Divergence , 2009, UAI.

[69]  Christopher D. Manning,et al.  Hierarchical Bayesian Domain Adaptation , 2009, NAACL.

[70]  Koby Crammer,et al.  A theory of learning from different domains , 2010, Machine Learning.

[71]  Karsten M. Borgwardt,et al.  Covariate Shift by Kernel Mean Matching , 2009, NIPS 2009.

[72]  Yishay Mansour,et al.  Domain Adaptation: Learning Bounds and Algorithms , 2009, COLT.

[73]  Steffen Bickel,et al.  Discriminative Learning under Covariate Shift with a Single Optimization Problem , 2009 .

[74]  Quanquan Gu,et al.  Learning the Shared Subspace for Multi-task Clustering and Transductive Transfer Classification , 2009, 2009 Ninth IEEE International Conference on Data Mining.

[75]  Neil D. Lawrence,et al.  Dataset Shift in Machine Learning , 2009 .

[76]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[77]  Takafumi Kanamori,et al.  A Least-squares Approach to Direct Importance Estimation , 2009, J. Mach. Learn. Res..

[78]  G. Englebienne,et al.  Transferring Knowledge of Activity Recognition across Sensor Networks , 2010, Pervasive.

[79]  Shuigeng Zhou,et al.  Gene ontology based transfer learning for protein subcellular localization , 2011, BMC Bioinformatics.

[80]  Yishay Mansour,et al.  Learning Bounds for Importance Weighting , 2010, NIPS.

[81]  Dacheng Tao,et al.  Bregman Divergence-Based Regularization for Transfer Subspace Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[82]  David M. Simcha,et al.  Tackling the widespread and critical impact of batch effects in high-throughput data , 2010, Nature Reviews Genetics.

[83]  Lorenzo Bruzzone,et al.  Domain Adaptation Problems: A DASVM Classification Technique and a Circular Validation Strategy , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[84]  Austin H. Chen,et al.  A New Multi-Task Learning Technique to Predict Classification of Leukemia and Prostate Cancer , 2010, ICMB.

[85]  Qiang Yang,et al.  A Survey on Transfer Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[86]  Oliver Kramer,et al.  Detecting Quasars in Large-Scale Astronomical Surveys , 2010, 2010 Ninth International Conference on Machine Learning and Applications.

[87]  Qiang Yang,et al.  Cross-domain sentiment classification via spectral feature alignment , 2010, WWW '10.

[88]  Masashi Sugiyama,et al.  A Transfer Learning Approach and Selective Integration of Multiple Types of Assays for Biological Network Inference , 2010, Int. J. Knowl. Discov. Bioinform..

[89]  Pascal Vincent,et al.  Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion , 2010, J. Mach. Learn. Res..

[90]  Gunnar Rätsch,et al.  Novel Machine Learning Methods for MHC Class I Binding Prediction , 2010, PRIB.

[91]  John Blitzer,et al.  Co-Training for Domain Adaptation , 2011, NIPS.

[92]  Alexei A. Efros,et al.  Unbiased look at dataset bias , 2011, CVPR 2011.

[93]  Anna Margolis,et al.  A Literature Review of Domain Adaptation with Unlabeled Data , 2011 .

[94]  Ivor W. Tsang,et al.  Domain Adaptation via Transfer Component Analysis , 2009, IEEE Transactions on Neural Networks.

[95]  Gregory Ditzler,et al.  Hellinger distance based drift detection for nonstationary environments , 2011, 2011 IEEE Symposium on Computational Intelligence in Dynamic and Uncertain Environments (CIDUE).

[96]  Shie Mannor,et al.  Robustness and generalization , 2010, Machine Learning.

[97]  Qiang Yang,et al.  A Survey of Transfer and Multitask Learning in Bioinformatics , 2011, J. Comput. Sci. Eng..

[98]  Qiang Yang,et al.  Multi-platform gene-expression mining and marker gene analysis , 2011, Int. J. Data Min. Bioinform..

[99]  Yoshua Bengio,et al.  Domain Adaptation for Large-Scale Sentiment Classification: A Deep Learning Approach , 2011, ICML.

[100]  John Blitzer,et al.  Domain Adaptation with Coupled Subspaces , 2011, AISTATS.

[101]  Vladimir Pavlovic,et al.  Central Subspace Dimensionality Reduction Using Covariance Operators , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[102]  J. Tucker Selection Bias and Econometric Remedies in Accounting and Finance Research , 2011 .

[103]  Viswa Mani Kiran Peddinti,et al.  Domain Adaptation in Sentiment Analysis of Twitter , 2011, Analyzing Microtext.

[104]  Rama Chellappa,et al.  Domain adaptation for object recognition: An unsupervised approach , 2011, 2011 International Conference on Computer Vision.

[105]  Yuan Shi,et al.  Information-Theoretical Learning of Discriminative Clusters for Unsupervised Domain Adaptation , 2012, ICML.

[106]  Yuan Shi,et al.  Geodesic flow kernel for unsupervised domain adaptation , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[107]  Kilian Q. Weinberger,et al.  Marginalized Denoising Autoencoders for Domain Adaptation , 2012, ICML.

[108]  Yaoliang Yu,et al.  Analysis of Kernel Mean Matching under Covariate Shift , 2012, ICML.

[109]  Takafumi Kanamori,et al.  Density Ratio Estimation in Machine Learning , 2012 .

[110]  Dong Liu,et al.  Robust visual domain adaptation with low-rank reconstruction , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[111]  Marco Loog,et al.  Nearest neighbor-based importance weighting , 2012, 2012 IEEE International Workshop on Machine Learning for Signal Processing.

[112]  Dacheng Tao,et al.  This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS 1 Cross-Domain Human Action Recognition , 2022 .

[113]  Francisco Herrera,et al.  A unifying view on dataset shift in classification , 2012, Pattern Recognit..

[114]  Masashi Sugiyama,et al.  Importance-weighted least-squares probabilistic classifier for covariate shift adaptation with application to human activity recognition , 2012, Neurocomputing.

[115]  Rama Chellappa,et al.  A Grassmann manifold-based domain adaptation approach , 2012, Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012).

[116]  Bernhard Schölkopf,et al.  On causal and anticausal learning , 2012, ICML.

[117]  Yifan Gong,et al.  Cross-language knowledge transfer using multilingual deep neural network with shared hidden layers , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[118]  Tinne Tuytelaars,et al.  Unsupervised Visual Domain Adaptation Using Subspace Alignment , 2013, 2013 IEEE International Conference on Computer Vision.

[119]  Marc Sebban,et al.  Iterative Self-Labeling Domain Adaptation for Linear Structured Image Classification , 2013, Int. J. Artif. Intell. Tools.

[120]  Bernhard Schölkopf,et al.  Domain Adaptation under Target and Conditional Shift , 2013, ICML.

[121]  Trevor Darrell,et al.  Semi-supervised Domain Adaptation with Instance Constraints , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[122]  Bernhard Schölkopf,et al.  Domain Generalization via Invariant Feature Representation , 2013, ICML.

[123]  Nitish Srivastava,et al.  Discriminative Transfer Learning with Tree-based Priors , 2013, NIPS.

[124]  Hanyun Wang,et al.  Learn Multiple-Kernel SVMs for Domain Adaptation in Hyperspectral Data , 2013, IEEE Geoscience and Remote Sensing Letters.

[125]  Brian C. Lovell,et al.  Unsupervised Domain Adaptation by Domain Invariant Projection , 2013, 2013 IEEE International Conference on Computer Vision.

[126]  François Laviolette,et al.  A PAC-Bayesian Approach for Domain Adaptation with Specialization to Linear Classifiers , 2013, ICML.

[127]  Hank Liao,et al.  Speaker adaptation of context dependent deep neural networks , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[128]  Kristen Grauman,et al.  Connecting the Dots with Landmarks: Discriminatively Learning Domain-Invariant Features for Unsupervised Domain Adaptation , 2013, ICML.

[129]  Yishay Mansour,et al.  Robust domain adaptation , 2013, Annals of Mathematics and Artificial Intelligence.

[130]  Kristen Grauman,et al.  Reshaping Visual Datasets for Domain Adaptation , 2013, NIPS.

[131]  Trevor Darrell,et al.  Continuous Manifold Based Adaptation for Evolving Visual Domains , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[132]  Russell Greiner,et al.  Robust Learning under Uncertain Test Distributions: Relating Covariate Shift to Model Misspecification , 2014, ICML.

[133]  Mehryar Mohri,et al.  Domain adaptation and sample bias correction theory and algorithm for regression , 2014, Theor. Comput. Sci..

[134]  Björn W. Schuller,et al.  Autoencoder-based Unsupervised Domain Adaptation for Speech Emotion Recognition , 2014, IEEE Signal Processing Letters.

[135]  Peter Harremoës,et al.  Rényi Divergence and Kullback-Leibler Divergence , 2012, IEEE Transactions on Information Theory.

[136]  Ming Shao,et al.  Generalized Transfer Subspace Learning Through Low-Rank Constraint , 2014, International Journal of Computer Vision.

[137]  Brian D. Ziebart,et al.  Robust Classification Under Sample Selection Bias , 2014, NIPS.

[138]  Brian C. Lovell,et al.  Domain Adaptation on the Statistical Manifold , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[139]  Ivan Titov,et al.  A Hierarchical Bayesian Model for Unsupervised Induction of Script Knowledge , 2014, EACL.

[140]  Ivor W. Tsang,et al.  Learning With Augmented Features for Supervised and Semi-Supervised Heterogeneous Domain Adaptation , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[141]  Efstathios Stamatatos,et al.  Syntactic N-grams as machine learning features for natural language processing , 2014, Expert Syst. Appl..

[142]  Rama Chellappa,et al.  Unsupervised Adaptation Across Domain Shifts by Generating Intermediate Data Representations , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[143]  Nicu Sebe,et al.  Unsupervised Domain Adaptation for Personalized Facial Emotion Recognition , 2014, ICMI.

[144]  Jeffrey M. Wooldridge,et al.  What Are We Weighting For? , 2013, The Journal of Human Resources.

[145]  Rémi Emonet,et al.  Landmarks-based kernelized subspace alignment for unsupervised domain adaptation , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[146]  Victor S. Lempitsky,et al.  Unsupervised Domain Adaptation by Backpropagation , 2014, ICML.

[147]  Fabian Gieseke,et al.  Nearest neighbor density ratio estimation for large-scale applications in astronomy , 2015, Astron. Comput..

[148]  Shiliang Sun,et al.  A survey of multi-source domain adaptation , 2015, Inf. Fusion.

[149]  Marc Sebban,et al.  A new boosting algorithm for provably accurate unsupervised domain adaptation , 2015, Knowledge and Information Systems.

[150]  Bernhard Schölkopf,et al.  Multi-Source Domain Adaptation: A Causal View , 2015, AAAI.

[151]  Rama Chellappa,et al.  Domain Adaptation for Visual Recognition , 2015, Found. Trends Comput. Graph. Vis..

[152]  Emilie Morvant Domain adaptation of weighted majority votes via perturbed variation-based self-labeling , 2015, Pattern Recognit. Lett..

[153]  Michael I. Jordan,et al.  Learning Transferable Features with Deep Adaptation Networks , 2015, ICML.

[154]  Rama Chellappa,et al.  Visual Domain Adaptation: A survey of recent advances , 2015, IEEE Signal Processing Magazine.

[155]  François Laviolette,et al.  A new PAC-Bayesian perspective on domain adaptation , 2015, ICML 2016.

[156]  Kate Saenko,et al.  Subspace Distribution Alignment for Unsupervised Domain Adaptation , 2015, BMVC.

[157]  Rui Caseiro,et al.  Beyond the shortest path: Unsupervised domain adaptation by Sampling Subspaces along the Spline Flow , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[158]  Marleen de Bruijne,et al.  Transfer Learning Improves Supervised Image Segmentation Across Imaging Protocols , 2015, IEEE Trans. Medical Imaging.

[159]  Philip S. Yu,et al.  Domain Invariant Transfer Kernel Learning , 2015, IEEE Transactions on Knowledge and Data Engineering.

[160]  D. Rubin,et al.  Causal Inference for Statistics, Social, and Biomedical Sciences: Sensitivity Analysis and Bounds , 2015 .

[161]  Trevor Darrell,et al.  Simultaneous Deep Transfer Across Domains and Tasks , 2015, ICCV.

[162]  George Trigeorgis,et al.  Domain Separation Networks , 2016, NIPS.

[163]  François Laviolette,et al.  Domain-Adversarial Training of Neural Networks , 2015, J. Mach. Learn. Res..

[164]  Trevor Darrell,et al.  FCNs in the Wild: Pixel-level Adversarial and Constraint-based Adaptation , 2016, ArXiv.

[165]  Cor J. Veenman,et al.  On Selection Bias with Imbalanced Classes , 2016, DS.

[166]  Bernhard Schölkopf,et al.  Domain Adaptation with Conditional Transferable Components , 2016, ICML.

[167]  Brian D. Ziebart,et al.  Robust Covariate Shift Regression , 2016, AISTATS.

[168]  Haizhou Li,et al.  Total Variability Modeling Using Source-Specific Priors , 2016, IEEE/ACM Transactions on Audio, Speech, and Language Processing.

[169]  Michael I. Jordan,et al.  Unsupervised Domain Adaptation with Residual Transfer Networks , 2016, NIPS.

[170]  Ekin Gedik,et al.  Speaking status detection from body movements using transductive parameter transfer , 2016, UbiComp Adjunct.

[171]  Mehrtash Tafazzoli Harandi,et al.  Distribution-Matching Embedding for Visual Domain Adaptation , 2016, J. Mach. Learn. Res..

[172]  Maria-Florina Balcan,et al.  Risk Bounds for Transferring Representations With and Without Fine-Tuning , 2017, ICML.

[173]  Yanning Zhang,et al.  An unsupervised deep domain adaptation approach for robust speech recognition , 2017, Neurocomputing.

[174]  Nico Karssemeijer,et al.  Transfer Learning for Domain Adaptation in MRI: Application in Brain Lesion Segmentation , 2017, MICCAI.

[175]  Dumitru Erhan,et al.  Unsupervised Pixel-Level Domain Adaptation with Generative Adversarial Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[176]  Ekin Gedik,et al.  Personalised models for speech detection from body movements using transductive parameter transfer , 2017, Personal and Ubiquitous Computing.

[177]  Gabriela Csurka,et al.  Domain Adaptation for Visual Applications: A Comprehensive Survey , 2017, ArXiv.

[178]  Trevor Darrell,et al.  Adversarial Discriminative Domain Adaptation , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[179]  Alex Bewley,et al.  Addressing appearance change in outdoor robotics with adversarial domain adaptation , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[180]  Elena Marchiori,et al.  Unsupervised Domain Adaptation with Random Walks on Target Labelings , 2017 .

[181]  Marco Loog,et al.  Supervised Classification: Quite a Brief Overview , 2017, ArXiv.

[182]  Cewu Lu,et al.  Virtual to Real Reinforcement Learning for Autonomous Driving , 2017, BMVC.

[183]  Jaeho Lee,et al.  Minimax Statistical Learning and Domain Adaptation with Wasserstein Distances , 2017, ArXiv.

[184]  Yiqiang Chen,et al.  Balanced Distribution Adaptation for Transfer Learning , 2017, 2017 IEEE International Conference on Data Mining (ICDM).

[185]  Wouter M. Kouw,et al.  Target contrastive pessimistic risk for robust domain adaptation , 2017, ArXiv.

[186]  Konstantinos Kamnitsas,et al.  Unsupervised domain adaptation in brain lesion segmentation with adversarial networks , 2016, IPMI.

[187]  Gang Niu,et al.  Does Distributionally Robust Supervised Learning Give Robust Classifiers? , 2016, ICML.

[188]  Tatsuya Harada,et al.  Maximum Classifier Discrepancy for Unsupervised Domain Adaptation , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[189]  Bernhard Schölkopf,et al.  Invariant Models for Causal Transfer Learning , 2015, J. Mach. Learn. Res..

[190]  Wouter M. Kouw,et al.  Target Contrastive Pessimistic Discriminant Analysis , 2018, ArXiv.

[191]  Sergey Levine,et al.  Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[192]  Elena Marchiori,et al.  Domain Adaptation with Randomized Expectation Maximization , 2018, ArXiv.

[193]  Debasmit Das,et al.  Graph Matching and Pseudo-Label Guided Deep Unsupervised Domain Adaptation , 2018, ICANN.

[194]  Debasmit Das,et al.  Sample-to-Sample Correspondence for Unsupervised Domain Adaptation , 2018, Eng. Appl. Artif. Intell..

[195]  Haizhou Li,et al.  Unsupervised Domain Adaptation via Domain Adversarial Training for Speaker Recognition , 2018, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[196]  Debasmit Das,et al.  Unsupervised Domain Adaptation Using Regularized Hyper-Graph Matching , 2018, 2018 25th IEEE International Conference on Image Processing (ICIP).

[197]  Mei Wang,et al.  Deep Visual Domain Adaptation: A Survey , 2018, Neurocomputing.

[198]  Edwin Lughofer,et al.  Robust Unsupervised Domain Adaptation for Neural Networks via Moment Alignment , 2017, Inf. Sci..

[199]  Jaime G. Carbonell,et al.  Characterizing and Avoiding Negative Transfer , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[200]  Wouter M. Kouw,et al.  Learning An Mr Acquisition-Invariant Representation Using Siamese Neural Networks , 2018, 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019).