Weakening of the subduction interface and its effects on surface heat flow, slab dehydration, and mantle wedge serpentinization

[1] The shallow part of the interface between the subducting slab and the overriding mantle wedge is evidently weakened by the presence of hydrous minerals and high fluid pressure. We use a two-dimensional finite element model, with a thin layer of uniform viscosity along the slab surface to represent the strength of the interface and a dislocation-creep rheology for the mantle wedge, to investigate the effect of this interface “decoupling.” Decoupling occurs when the temperature-dependent viscous strength of the mantle wedge is greater than that of the interface layer. We find that the maximum depth of decoupling is the key to most primary thermal and petrological processes in subduction zone forearcs. The forearc mantle wedge above a weakened subduction interface always becomes stagnant (<0.2% slab velocity), providing a stable thermal environment for the formation of serpentinite. The degree of mantle wedge serpentinization depends on the availability of aqueous fluids from slab dehydration. A very young and warm slab releases most of its bound H2O in the forearc, leading to a high degree of mantle wedge serpentinization. A very old and cold slab retains most of its H2O until farther landward, leading to a lower degree of serpentinization. Our preferred model for northern Cascadia has a maximum decoupling depth of about 70–80 km, which provides a good fit to surface heat flow data, predicts conditions for a high degree of serpentinization of the forearc mantle wedge, and is consistent with the observed shallow intraslab seismicity and low volume of arc volcanism.

[1]  P. Kelemen,et al.  Thermal Structure due to Solid‐State Flow in the Mantle Wedge Beneath Arcs , 2013 .

[2]  C. Doglioni,et al.  Evidence for serpentinite fluid in convergent margin systems: The example of El Salvador (Central America) arc lavas , 2007 .

[3]  D. Wiens,et al.  Complex mantle flow in the Mariana subduction system: evidence from shear wave splitting , 2007 .

[4]  H. Kawakatsu,et al.  Seismic Evidence for Deep-Water Transportation in the Mantle , 2007, Science.

[5]  S. Karato,et al.  Stress, strain, and B‐type olivine fabric in the fore‐arc mantle: Sensitivity tests using high‐resolution steady‐state subduction zone models , 2007 .

[6]  G. Beroza,et al.  Non-volcanic tremor and low-frequency earthquake swarms , 2007, Nature.

[7]  N. Chatterjee,et al.  The influence of H2O on mantle wedge melting , 2006 .

[8]  R. Hilst,et al.  Shear wave splitting from local events beneath the Ryukyu arc : Trench-parallel anisotropy in the mantle wedge , 2006 .

[9]  Ellen M. Syracuse,et al.  Global compilation of variations in slab depth beneath arc volcanoes and implications , 2006 .

[10]  G. Abers,et al.  The thermal structure of subduction zones constrained by seismic imaging: Implications for slab dehydration and wedge flow , 2006 .

[11]  Narumi Takahashi,et al.  Structural characteristics off Miyagi forearc region, the Japan Trench seismogenic zone, deduced from a wide-angle reflection and refraction study , 2005 .

[12]  Hitoshi Hirose,et al.  Repeating short- and long-term slow slip events with deep tremor activity around the Bungo channel region, southwest Japan , 2005 .

[13]  Jeffrey Park,et al.  B-type olivine fabric in the mantle wedge: Insights from high-resolution non-Newtonian subduction zone models , 2005 .

[14]  H. Kao,et al.  A wide depth distribution of seismic tremors along the northern Cascadia margin , 2005, Nature.

[15]  R. Blakely,et al.  Subduction-zone magnetic anomalies and implications for hydrated forearc mantle , 2005 .

[16]  R. Fergason,et al.  Thermal structure of the Costa Rica – Nicaragua subduction zone , 2005 .

[17]  J. Conder A case for hot slab surface temperatures in numerical viscous flow models of subduction zones with an improved fault zone parameterization , 2005 .

[18]  S. Dosso,et al.  Forearc structure beneath southwestern British Columbia: A three-dimensional tomographic velocity model , 2005 .

[19]  R. Hyndman,et al.  The thermal structure of subduction zone back arcs , 2004 .

[20]  S. Schwartz,et al.  Evidence for serpentinization of the forearc mantle wedge along the Nicoya Peninsula, Costa Rica , 2004 .

[21]  G. Abers,et al.  Seismic attenuation and mantle wedge temperatures in the Alaska subduction zone , 2004 .

[22]  Narumi Takahashi,et al.  Seismic structure and seismogenesis off Sanriku region, northeastern Japan , 2004 .

[23]  N. Christensen,et al.  Serpentinites, Peridotites, and Seismology , 2004 .

[24]  Kelin Wang,et al.  The thermal effects of steady-state slab-driven mantle flow above a subducting plate: the Cascadia subduction zone and backarc , 2004 .

[25]  B. W. Evans The Serpentinite Multisystem Revisited: Chrysotile Is Metastable , 2004 .

[26]  J. Cassidy,et al.  Shear wave anisotropy beneath the Cascadia subduction zone and western North American craton , 2004 .

[27]  W. Thatcher,et al.  Systematic variation in the depths of slabs beneath arc volcanoes , 2004 .

[28]  Simon M. Peacock,et al.  Serpentinization of the forearc mantle , 2003 .

[29]  H. Dragert,et al.  Episodic Tremor and Slip on the Cascadia Subduction Zone: The Chatter of Silent Slip , 2003, Science.

[30]  K. Hattori,et al.  Volcanic fronts form as a consequence of serpentinite dehydration in the forearc mantle wedge , 2003 .

[31]  D. Miller,et al.  Mantle wedge water contents estimated from seismic velocities in partially serpentinized peridotites , 2003 .

[32]  C. Snelson,et al.  Seismic evidence for widespread serpentinized forearc upper mantle along the Cascadia margin , 2003 .

[33]  A. Nakanishi,et al.  Structural characteristics controlling the seismicity crustal structure of southern Japan Trench fore-arc region, revealed by ocean bottom seismographic data , 2003 .

[34]  R. Jarrard Subduction fluxes of water, carbon dioxide, chlorine, and potassium , 2002 .

[35]  S. Peacock,et al.  High‐resolution models of subduction zones: Implications for mineral dehydration reactions and the transport of water into the deep mantle , 2002 .

[36]  Kazushige Obara,et al.  Nonvolcanic Deep Tremor Associated with Subduction in Southwest Japan , 2002, Science.

[37]  R. Hyndman,et al.  An inverted continental Moho and serpentinization of the forearc mantle , 2002, Nature.

[38]  J. Nakajima,et al.  Three‐dimensional structure of Vp, Vs, and Vp/Vs beneath northeastern Japan: Implications for arc magmatism and fluids , 2001 .

[39]  Yoji Kobayashi,et al.  Dehydration of serpentinized slab mantle: Seismic evidence from southwest Japan , 2001 .

[40]  S. Karato,et al.  Water-Induced Fabric Transitions in Olivine , 2001, Science.

[41]  D. Wiens,et al.  A Complex Pattern of Mantle Flow in the Lau Backarc , 2001, Science.

[42]  Kelin Wang,et al.  A Silent Slip Event on the Deeper Cascadia Subduction Interface , 2001, Science.

[43]  A. Hasegawa,et al.  Three-dimensional attenuation structure beneath the northeastern Japan arc estimated from spectra of small earthquakes , 2000 .

[44]  D. Lockner,et al.  The effect of mineral bond strength and adsorbed water on fault gouge frictional strength , 2000 .

[45]  Shin'ichiro Kamiya,et al.  Seismological evidence for the existence of serpentinized wedge mantle , 2000 .

[46]  Kelin Wang,et al.  Seismic consequences of warm versus cool subduction metamorphism: examples from southwest and northeast japan , 1999, Science.

[47]  G. Asch,et al.  Three‐dimensional models of P wave velocity and P‐to‐S velocity ratio in the southern central Andes by simultaneous inversion of local earthquake data , 1999 .

[48]  Simon M. Peacock,et al.  Hydrous minerals in the mantle wedge and the maximum depth of subduction thrust earthquakes , 1999 .

[49]  Kelin Wang,et al.  How does plate coupling affect crustal stresses in northeast and southwest Japan? , 1999 .

[50]  Kelin Wang,et al.  Mechanics of low‐stress forearcs: Nankai and Cascadia , 1999 .

[51]  S. Poli,et al.  Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation , 1998 .

[52]  H. Iwamori Transportation of H2O and melting in subduction zones , 1998 .

[53]  N. Christensen Poisson's ratio and crustal seismology , 1996 .

[54]  P. Fryer Evolution of the Mariana Convergent Plate Margin System , 1996 .

[55]  B. Wood,et al.  The high-pressure stability of talc and 10 Å phase: Potential storage sites for H2O in subduction zones , 1995 .

[56]  E. Kanasewich,et al.  Crustal velocity structure of the Omineca and Intermontane Belts, southeastern Canadian Cordillera , 1995 .

[57]  Kelin Wang,et al.  Case for very low coupling stress on the Cascadia Ssubduction Fault , 1995 .

[58]  N. Umino,et al.  Seismic structure of the northeastern Japan convergent margin: A synthesis , 1994 .

[59]  Kelin Wang,et al.  Tectonic sediment thickening, fluid expulsion, and the thermal regime of subduction zone accretionary prisms: The Cascadia Margin off Vancouver Island , 1993 .

[60]  Y. Furukawa Depth of the decoupling plate interface and thermal structure under arcs , 1993 .

[61]  Patrick Wu,et al.  Rheology of the Upper Mantle: A Synthesis , 1993, Science.

[62]  Akira Hasegawa,et al.  Tomographic imaging of P and S wave velocity structure beneath northeastern Japan , 1992 .

[63]  S. Stein,et al.  A model for the global variation in oceanic depth and heat flow with lithospheric age , 1992, Nature.

[64]  T. Lewis,et al.  Crustal temperatures near the Lithoprobe Southern Canadian Cordillera Transect , 1992 .

[65]  D. Blackwell,et al.  Heat flow in the state of washington and thermal conditions in the Cascade Range , 1990 .

[66]  D. Blackwell,et al.  Heat flow in the Oregon Cascade Range and its correlation with regional gravity, Curie point depths, and geology , 1990 .

[67]  W. J. Morgan,et al.  A nonlinear rheology model for mid‐ocean ridge axis topography , 1990 .

[68]  H. Villinger,et al.  Rates of fluid expulsion across the Northern Cascadia Accretionary Prism: Constraints from new heat row and multichannel seismic reflection data , 1990 .

[69]  M. Barton,et al.  Fluid flow and metasomatism in a subduction zone hydrothermal system: Catalina Schist terrane, California , 1989 .

[70]  S. Uyeda,et al.  Thermal state under the Tohoko arc with consideration of crustal heat generation , 1989 .

[71]  T. Katsura,et al.  A temperature profile of the mantle transition zone , 1989 .

[72]  S. Peacock Serpentinization and infiltration metasomatism in the Trinity peridotite, Klamath province, northern California: implications for subduction zones , 1987 .

[73]  B. W. Evans Metamorphism of Alpine Peridotite and Serpentinite , 1977 .

[74]  M. F. Ashby,et al.  On the rheology of the upper mantle , 1973 .

[75]  P. Lomdahl,et al.  Nonvolcanic Deep Tremor Associated with Subduction in Southwest Japan Kazushige Obara , 2008 .

[76]  C. wlry,et al.  The high-pressure stability of talc and 10 A phase : Potential storage sites for HrO in subduction zones , 2007 .

[77]  A. Goro,et al.  Stability of chlorite in the upper mantle , 2007 .

[78]  東野 陽子 Use of Hi-net tiltmeter records to image mantle discontinuities and anisotropic structure beneath the Japanese Islands , 2006 .

[79]  C. Currie The thermal structure of subduction zones and backarcs , 2004 .

[80]  Simon M. Peacock,et al.  Subduction factory 2. Are intermediate‐depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? , 2003 .

[81]  Simon M. Peacock,et al.  Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H 2 O contents , 2003 .

[82]  P. Pedley,et al.  An Introduction to Fluid Dynamics , 1968 .

[83]  E. Engdahl,et al.  Intermediate-Depth Intraslab Earthquakes and Arc Volcanism as Physical Expressions of Crustal and Uppermost Mantle Metamorphism in Subducting Slabs , 1996 .

[84]  Craig S. Weaver,et al.  Seismicity of Washington and Oregon , 1991 .

[85]  Giorgio Ranalli,et al.  Rheology of the earth , 1987 .