A new algebra of Toeplitz-plus-Hankel matrices and applications
暂无分享,去创建一个
[1] F. Diele,et al. Centrosymmetric isospectral flows and some inverse eigenvalue problems , 2003 .
[2] R. Plemmons,et al. Structured low rank approximation , 2003 .
[3] A. Gersho. Adaptive equalization of highly dispersive channels for data transmission , 1969 .
[4] Fasma Diele,et al. On Some Inverse Eigenvalue Problems with Toeplitz-Related Structure , 2004, SIAM J. Matrix Anal. Appl..
[5] Salvatore D. Morgera,et al. On the reducibility of centrosymmetric matrices — Applications in engineering problems , 1989 .
[6] Moody T. Chu,et al. Real-Valued, Low Rank, Circulant Approximation , 2003, SIAM J. Matrix Anal. Appl..
[7] T. Chan. An Optimal Circulant Preconditioner for Toeplitz Systems , 1988 .
[8] Dario Bini,et al. SPECTRAL AND COMPUTATIONAL PROPERTIES OF BAND SYMMETRIC TOEPLITZ MATRICES , 1983 .
[9] Gene H. Golub,et al. Matrix computations , 1983 .
[10] J. Weaver. Centrosymmetric (Cross-Symmetric) Matrices, Their Basic Properties, Eigenvalues, and Eigenvectors , 1985 .
[11] C. T. Mullis,et al. Inverse eigenvalue problem for real symmetric Toeplitz matrices , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.
[12] G. Golub,et al. Structured inverse eigenvalue problems , 2002, Acta Numerica.
[13] J. Tukey,et al. An algorithm for the machine calculation of complex Fourier series , 1965 .
[14] John G. Proakis,et al. An estimate of the upper bound on error probability for maximum-likelihood sequence estimation on channels having a finite-duration pulse response (Corresp.) , 1973, IEEE Trans. Inf. Theory.
[15] O. Rojo,et al. Some results on symmetric circulant matrices and on symmetric centrosymmetric matrices , 2004 .
[16] Alan L. Andrew,et al. Eigenvectors of certain matrices , 1973 .