Among the different assumptions proposed to explain why tropical tuna aggregate around floating objects ("logs"), one of the most recent is that floating objects may represent meeting points for tuna. This "meeting point hypothesis" proposes that tuna can use these floating objects to form larger schools after school fission or dispersion. The influence of meeting points on tuna school sizes is explored through different individual-based models that consider a single fusion rule and a variety of fission rules based on energetic considerations, the role of school size on school cohesion, predator attacks, and dispersion during the night. Results are first analyzed using an averaging approach to study the overall mean school size in habitats having different floating object densities. Second, a dynamic approach is used to compare the temporal dynamics of associated and free-swimming school sizes. The averaging approach indicates that in all the models (except those based on energetics), floating objects increase school size, at least up to a certain object density. The dynamic approach clearly illustrates different dynamics in the school size of associated and free-swimming schools. Most of our models show that tuna associated with logs resume schooling in larger schools after fission events. Resume : Parmi les differentes hypotheses proposees pour expliquer pourquoi les thons tropicaux s'agglomerent autour d'objets flottants (« billots »), l'une des plus recentes est que les objets flottants pourraient representer des points de rencontre. Selon cette hypothese du « point de rencontre », les thons pourraient utiliser ces objets flottants pour former de plus grands bancs apres division ou dispersion des bancs. L'influence des points de rencontre sur les tailles des bancs de thons est examinee au moyen de modeles fondes sur les individus qui utilisent une regle de fusion unique et diverses regles de division fondees sur des considerations energetiques, le role de la taille du banc dans sa cohesion, les attaques des predateurs et la dispersion nocturne. On analyse d'abord les resultats suivant une methode d'etablissement de moyennes pour etudier la taille moyenne globale des bancs dans des habitats ou l'on trouve diverses densites d'objets flottants. Deuxiemement, on applique une methode dynamique pour comparer les dynamiques temporelles des tailles des bancs associes et libres. La methode des moyennes montre que, suivant tous les modeles (sauf ceux bases sur l'energetique), les objets flottants accroissent la taille des bancs, au moins jusqu'a une certaine densite d'objets. La methode dynamique, quant a elle, revele clairement que les dynamiques de la taille des bancs associes et libres sont differentes. La plupart de nos modeles montrent que les thons associes aux billots reforment de plus grands bancs apres les divisions de bancs. (Traduit par la Redaction) Dagorn and Freon 993
[1]
D. DeAngelis,et al.
New Computer Models Unify Ecological TheoryComputer simulations show that many ecological patterns can be explained by interactions among individual organisms
,
1988
.
[2]
J. Hampton,et al.
Modeling Effects of FADs and Islands on Movement of Skipjack Tuna (Katsuwonus pelamis): Estimating Parameters from Tagging Data
,
1994
.
[3]
A. Fonteneau.
Pêche thonière et objets flottants : situation mondiale et perspectives
,
1992
.
[4]
D. Wickham,et al.
Attraction of Coastal Pelagic Fishes with Artificial Structures
,
1971
.
[5]
Pascal Bach,et al.
Experimental research and fish aggregating devices (FADs) in French Polynesia
,
1998
.
[6]
Marten Scheffer,et al.
Super-individuals a simple solution for modelling large populations on an individual basis
,
1995
.
[7]
Pierre Fréon,et al.
Dynamics of pelagic fish distribution and behaviour : effects on fisheries and stock assessment
,
1999
.
[8]
K. Holland,et al.
HORIZONTAL AND VERTICAL MOVEMENTS OF YELLOWFIN AND BIGEYE TUNA ASSOCIATED WITH FISH AGGREGATING DEVICES
,
1990
.
[9]
P. Cayre.
Behaviour of yellowfin tuna (Thunnus albacares) and skipjack tuna (Katsuwonus pelarnis) around fish aggregating devices (FADs) in the Comoros Islands as determined by ultrasonic tagging
,
1991
.
[10]
C. Wissel,et al.
Models of fish school size in relation to environmental productivity
,
1988
.
[11]
A. Bakun.
Mechanisms for density-dependent growth in Peruvian anchoveta: alternatives to impact on the regional-scale food supply
,
1989
.
[12]
P. Hogeweg,et al.
Individual-oriented modelling in ecology
,
1990
.
[13]
P. Cayré,et al.
Marquage acoustique et comportement de thons tropicaux (albacore : THUNNUS ALBACARES, et listao : KATSUWONUS PELAMIS) au voisinage d'un dispositif concentrateur de poissons
,
1986
.
[14]
J. Hallier,et al.
Review of tuna fisheries on floating objects in the Indian Ocean
,
1992
.
[15]
A. Huth,et al.
The simulation of the movement of fish schools
,
1992
.
[16]
J. Blaxter,et al.
The Biology of the Clupeoid Fishes
,
1982
.
[17]
R. Hilborn,et al.
Tuna Purse-Seine Fishing with Fish-Aggregating Devices (FAD): Models of Tuna FAD Interactions
,
1989
.
[18]
S. Gueron,et al.
The dynamics of group formation.
,
1995,
Mathematical biosciences.
[19]
J. Magnuson,et al.
Ecological Significance of a Drifting Object to Pelagic Fishes
,
1967
.
[20]
Simon Benhamou,et al.
Efficiency of area-concentrated searching behaviour in a continuous patchy environment*
,
1992
.