Experimental Design for Sensitivity Analysis, Optimization and Validation of Simulation Models

This chapter gives a survey on the use of statistical designs for what-if analysis in simula- tion, including sensitivity analysis, optimization, and validation/verification. Sensitivity analysis is divided into two phases. The first phase is a pilot stage, which consists of screening or searching for the important factors among (say) hundreds of potentially important factors. A novel screening technique is presented, namely sequential bifurcation. The second phase uses regression analysis to approximate the input/output transformation that is implied by the simulation model; the resulting regression model is also known as a metamodel or a response surface. Regression analysis gives better results when the simu- lation experiment is well designed, using either classical statistical designs (such as frac- tional factorials) or optimal designs (such as pioneered by Fedorov, Kiefer, and Wolfo- witz). To optimize the simulated system, the analysts may apply Response Surface Metho- dology (RSM); RSM combines regression analysis, statistical designs, and steepest-ascent hill-climbing. To validate a simulation model, again regression analysis and statistical designs may be applied. Several numerical examples and case-studies illustrate how statisti- cal techniques can reduce the ad hoc character of simulation; that is, these statistical techniques can make simulation studies give more general results, in less time. Appendix 1 summarizes confidence intervals for expected values, proportions, and quantiles, in termi- nating and steady-state simulations. Appendix 2 gives details on four variance reduction techniques, namely common pseudorandom numbers, antithetic numbers, control variates or regression sampling, and importance sampling. Appendix 3 describes jackknifing, which may give robust confidence intervals.

[1]  R. Plackett,et al.  THE DESIGN OF OPTIMUM MULTIFACTORIAL EXPERIMENTS , 1946 .

[2]  G. Box,et al.  On the Experimental Attainment of Optimum Conditions , 1951 .

[3]  G. Box MULTI-FACTOR DESIGNS OF FIRST ORDER , 1952 .

[4]  J. Kiefer,et al.  Optimum Designs in Regression Problems , 1959 .

[5]  Calyampudi R. Rao SOME PROBLEMS INVOLVING LINEAR HYPOTHESES IN MULTIVARIATE ANALYSIS , 1959 .

[6]  D. Cox,et al.  An Analysis of Transformations , 1964 .

[7]  R. L. Rechtschaffner Saturated Fractions of 2n and 3n Factorial Designs , 1967 .

[8]  Steve R. Webb,et al.  Non-Orthogonal Designs of Even Resolution* , 1968 .

[9]  R. Dykstra Establishing the Positive Definiteness of the Sample Covariance Matrix , 1970 .

[10]  Jack P. C. Kleijnen Antithetic Variates, Common Random Numbers and Optimal Computer Time Allocation in Simulation , 1975 .

[11]  Jack P. C. Kleijnen,et al.  A Comment on Blanning's “Metamodel for Sensitivity Analysis: The Regression Metamodel in Simulation” , 1975 .

[12]  F. David,et al.  Statistical Techniques in Simulation: Part I , 1975 .

[13]  A. A. Crane,et al.  An introduction to the regenerative method for simulation analysis , 1977 .

[14]  N. J. Johnson,et al.  Modified t Tests and Confidence Intervals for Asymmetrical Populations , 1978 .

[15]  Robert E. Shannon,et al.  Design and analysis of simulation experiments , 1978, WSC '78.

[16]  J. S. Hunter,et al.  Statistics for experimenters : an introduction to design, data analysis, and model building , 1979 .

[17]  Lee W. Schruben,et al.  Pseudorandom Number Assignment in Statistically Designed Simulation and Distribution Sampling Experiments , 1978 .

[18]  Bernard P. Zeigler,et al.  Theory of Modelling and Simulation , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[19]  R. Wolff,et al.  The Almost Regenerative Method for Stochastic System Simulations , 1980, Oper. Res..

[20]  G. Volta,et al.  Synthesis and analysis methods for safety and reliability studies , 1980 .

[21]  Jack P. C. Kleijnen,et al.  Optimization of Priority Class Queues, with a Computer Center Case Study , 1981 .

[22]  B. M. Brown,et al.  Practical Non-Parametric Statistics. , 1981 .

[23]  R. Bartels The Rank Version of von Neumann's Ratio Test for Randomness , 1982 .

[24]  Michael Pinedo,et al.  A Comparison Between Tandem Queues with Dependent and Independent Service Times , 1982, Oper. Res..

[25]  J.P.C. Kleijnen,et al.  Testing the mean of an asymmetric population: Johnson's modified t test revisited , 1985 .

[26]  Jack P. C. Kleijnen,et al.  Experimental design and regression analysis in simulation : An FMS case study , 1988 .

[27]  J. Kleijnen Statistical tools for simulation practitioners , 1986 .

[28]  Jack P. C. Kleijnen,et al.  Jackknifing estimated weighted least squares: Jewls , 1987 .

[29]  B. Efron The jackknife, the bootstrap, and other resampling plans , 1987 .

[30]  Christopher J. Nachtsheim,et al.  Tools for Computer-Aided Design of Experiments , 1987 .

[31]  Donald L. Iglehart,et al.  Importance sampling for stochastic simulations , 1989 .

[32]  Eric F. Wolstenholme,et al.  System Enquiry: A System Dynamics Approach , 1990 .

[33]  Bernardus Wilhelmus Maria Bettonvil,et al.  Detection of important factors by sequential bifurcation , 1990 .

[34]  Susan M. Sanchez,et al.  Designing simulation experiments: Taguchi methods and response surface metamodels , 1991, 1991 Winter Simulation Conference Proceedings..

[35]  Saul I. Gass,et al.  An Assessment Procedure for Simulation Models: A Case Study , 1991, Oper. Res..

[36]  J. Kleijnen Regression metamodels for simulation with common random numbers: comparison of validation tests and confidence intervals , 1992 .

[37]  Leyuan Shi,et al.  Optimizing discrete event dynamic systems via the gradient surface method , 1992, Discret. Event Dyn. Syst..

[38]  Karen Young Statistical Design and Analysis of Industrial Experiments , 1992 .

[39]  Jack P. C. Kleijnen,et al.  EUROPEAN JOURNAL OF OPERATIONAL , 1992 .

[40]  J. Kleijnen,et al.  Two-stage versus sequential sample-size determination in regression analysis of simulation experiments , 1992 .

[41]  Jack P. C. Kleijnen,et al.  Techniques for sensitivity analysis of simulation models: A case study of the CO2 greenhouse effect , 1992, Simul..

[42]  Jack P. C. Kleijnen,et al.  Simulation and optimization in production planning: A case study , 1993, Decis. Support Syst..

[43]  Terry Andres,et al.  Sensitivity analysis of model output: an investigation of new techniques , 1993 .

[44]  Peter D. Welch,et al.  Response surface methodology and its application in simulation , 1993, WSC '93.

[45]  Jean-Marie Dufour,et al.  Pitfalls of Rescalling Regression Models with Box-Cox Transformations , 1994 .

[46]  Stewart Robinson,et al.  Simulation: A Statistical Perspective , 1993 .

[47]  M. Hossein Safizadeh,et al.  Optimization of Simulation via Quasi-Newton Methods , 1994, INFORMS J. Comput..

[48]  W. David Kelton,et al.  Simulation statistical software: an introspective appraisal , 1994, Proceedings of Winter Simulation Conference.

[49]  James R. Wilson,et al.  Estimating simulation metamodels using combined correlation-based variance reduction techniques , 1994 .

[50]  Y. Sherif,et al.  Optimization by pattern search , 1994 .

[51]  Norman R. Draper Applied regression analysis bibliography update 1992–93 , 1994 .

[52]  Charles Leake,et al.  Discrete Event Systems: Sensitivity Analysis and Stochastic Optimization by the Score Function Method , 1994 .

[53]  Philip Heidelberger,et al.  Bounded relative error in estimating transient measures of highly dependable non-Markovian systems , 1994, TOMC.

[54]  Joan M. Donohue Experimental designs for simulation , 1994, Proceedings of Winter Simulation Conference.

[55]  Michael C. Fu,et al.  Optimization via simulation: A review , 1994, Ann. Oper. Res..

[56]  Anthony C. Atkinson,et al.  D-Optimum Designs for Heteroscedastic Linear Models , 1995 .

[57]  P. Glynn,et al.  Accelerated regeneration for markov chain simulations , 1995 .

[58]  Linda Weiser Friedman,et al.  The Simulation Metamodel , 1995 .

[59]  Jack P. C. Kleijnen Sensitivity analysis and optimization in simulation: design of experiments and case studies , 1995, WSC '95.

[60]  Joan M. Donohue The use of variance reduction techniques in the estimation of simulation metamodels , 1995, WSC '95.

[61]  Philip Heidelberger,et al.  Fast simulation of rare events in queueing and reliability models , 1993, TOMC.

[62]  Jean-Marie Fürbringer,et al.  Comparison and combination of factorial and Monte-Carlo design in sensitivity analysis , 1995 .

[63]  Jack P. C. Kleijnen,et al.  Sensitivity analysis and optimization of system dynamics models: Regression analysis and statistical design of experiments , 1995 .

[64]  Andrea Saltelli,et al.  Sensitivity analysis of model output. Performance of the iterated fractional factorial design method , 1995 .

[65]  Haldun Aytug,et al.  Determining the Number of Kanbans: A Simulation Metamodeling Approach , 1996, Simul..

[66]  Jack P. C. Kleijnen,et al.  Simulation : Runlength Selection and Variance Reduction Techniques , 1996 .

[67]  Jack P. C. Kleijnen,et al.  Regression metamodels and design of experiments , 1996, WSC.

[68]  Russell C. H. Cheng Searching for important factors: sequential bifurcation under uncertainty , 1997, WSC '97.

[69]  Barry L. Nelson,et al.  Computer-assisted simulation analysis , 1997 .

[70]  Jack P. C. Kleijnen,et al.  Searching for important factors in simulation models with many factors: Sequential bifurcation , 1997 .

[71]  Jack P. C. Kleijnen,et al.  Validation of Trace-Driven Simulation Models: A Novel Regression Test , 1998 .

[72]  Jack P. C. Kleijnen,et al.  Improved Design of Queueing Simulation Experiments with Highly Heteroscedastic Responses , 1999, Oper. Res..