300-GHz Back-Radiation On-Chip-Antenna Measurement with Electromagnetic-Wave-Absorption Sheet

A method is demonstrated to improve measurement accuracy for a back-radiation (inward-directed-radiation) on-chip antenna using a 300-GHz electromagnetic-wave absorption sheet. Electromagnetic-wave reflection owing to the material beneath a chip substrate occurs during the on-wafer measurement, leading to the input-impedance variance of that antenna at the feeding port, therefore, should be reduced using the method.

[1]  Kenichi Okada,et al.  22.2 A 300GHz-Band Phased-Array Transceiver Using Bi-Directional Outphasing and Hartley Architecture in 65nm CMOS , 2021, 2021 IEEE International Solid- State Circuits Conference (ISSCC).

[2]  K. O. Kenneth,et al.  287-GHz CMOS Transceiver Pixel Array in a QFN Package for Active Imaging , 2020, 2020 IEEE Asian Solid-State Circuits Conference (A-SSCC).

[3]  S. Hara,et al.  Effect of an Electromagnetic Wave Absorber on 300-GHz Short-Range Wireless Communications , 2020, 2020 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT).

[4]  S. Hara,et al.  Design of Electromagnetic Wave Absorption Sheet with Transparency and Flexibility in sub-THz Bands , 2020, 2020 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT).

[5]  B. Heinemann,et al.  A QPSK 110-Gb/s Polarization-Diversity MIMO Wireless Link With a 220–255 GHz Tunable LO in a SiGe HBT Technology , 2020, IEEE Transactions on Microwave Theory and Techniques.

[6]  Hideyuki Nosaka,et al.  300-GHz-Band 120-Gb/s Wireless Front-End Based on InP-HEMT PAs and Mixers , 2020, IEEE Journal of Solid-State Circuits.

[7]  Omeed Momeni,et al.  A 0.46-THz 25-Element Scalable and Wideband Radiator Array With Optimized Lens Integration in 65-nm CMOS , 2020, IEEE Journal of Solid-State Circuits.

[8]  S. Hara,et al.  An 80-Gb/s 300-GHz-Band Single-Chip CMOS Transceiver , 2019, IEEE Journal of Solid-State Circuits.

[9]  Masafumi Kimata,et al.  Metal-Insulator-Metal-Based Plasmonic Metamaterial Absorbers at Visible and Infrared Wavelengths: A Review , 2018, Materials.

[10]  Somak Bhattacharyya,et al.  An Ultrawideband Ultrathin Metamaterial Absorber Based on Circular Split Rings , 2015, IEEE Antennas and Wireless Propagation Letters.

[11]  A. Hasnain,et al.  Development of an economic and effective microwave absorber , 2007, 2007 Asia-Pacific Conference on Applied Electromagnetics.

[12]  Hu Aiping,et al.  Wide-band electromagnetic wave absorber of rubber-ferrite , 2002, 2002 3rd International Symposium on Electromagnetic Compatibility.