Adverse effect of beta-tricalcium phosphate with zeta potential control in repairing critical defects in rats’ calvaria☆

[1]  A. Leithner,et al.  Adverse Reactions of Artificial Bone Graft Substitutes: Lessons Learned From Using Tricalcium Phosphate geneX® , 2014, Clinical orthopaedics and related research.

[2]  J. Cooper,et al.  Letter to the Editor: Adverse Reactions of Artificial Bone Graft Substitutes: Lessons Learned From Using Tricalcium Phosphate geneX® , 2013, Clinical orthopaedics and related research.

[3]  J. Jansen,et al.  Evaluation of bone regeneration using the rat critical size calvarial defect , 2012, Nature Protocols.

[4]  D. Lun,et al.  Current Application of β‐tricalcium Phosphate Composites in Orthopaedics , 2012, Orthopaedic surgery.

[5]  C. -. Chen,et al.  Bone healing response to a synthetic calcium sulfate/β-tricalcium phosphate graft material in a sheep vertebral body defect model , 2012, Journal of biomedical materials research. Part B, Applied biomaterials.

[6]  C. Rudd,et al.  Repair of calvarial defects in rats by prefabricated, degradable, long fibre composite implants. , 2011, Journal of biomedical materials research. Part A.

[7]  S. Tangl,et al.  The effect of BMP-2 on the osteoconductive properties of β-tricalcium phosphate in rat calvaria defects. , 2011, Biomaterials.

[8]  M. Papadopoulos,et al.  Dangers of bone graft substitutes: lessons from using GeneX , 2011, Journal of Neurology, Neurosurgery & Psychiatry.

[9]  A. Sobral,et al.  Histological evaluation of bone repair using β-tricalcium phosphate. , 2011, Medicina oral, patologia oral y cirugia bucal.

[10]  D. F. Oliveira,et al.  Repair of critical-size defects with autogenous periosteum-derived cells combined with bovine anorganic apatite/collagen: an experimental study in rat calvaria. , 2011, Brazilian dental journal.

[11]  Á. J. Guerra,et al.  Regeneración ósea guiada con implante unitario con nanosuperficie y betafosfato tricálcico , 2010 .

[12]  C. Rudd,et al.  Analysis of calvarial bone defects in rats using microcomputed tomography: potential for a novel composite material and a new quantitative measurement. , 2009, The British journal of oral & maxillofacial surgery.

[13]  Y. Tabata,et al.  Enhanced Regeneration of Critical Bone Defects Using a Biodegradable Gelatin Sponge and β-Tricalcium Phosphate with Bone Morphogenetic Protein-2 , 2009, Journal of biomaterials applications.

[14]  D. Riediger,et al.  A new biphasic osteoinductive calcium composite material with a negative Zeta potential for bone augmentation , 2009, Head & face medicine.

[15]  T. Deliberador,et al.  Bone healing in critical-size defects treated with platelet-rich plasma activated by two different methods. A histologic and histometric study in rat calvaria. , 2008, Journal of periodontal research.

[16]  J. Jansen,et al.  The kinetic and biological activity of different loaded rhBMP-2 calcium phosphate cement implants in rats. , 2008, Journal of biomedical materials research. Part A.

[17]  E. V. Ortega,et al.  Implant treatment by fixed prostheses in completely edentulous mandible patients , 2007 .

[18]  E. V. Ortega,et al.  La utilización del betafosfato tricálcico como biomaterial en implantología oral , 2007 .

[19]  Munish C. Gupta,et al.  Efficacy of Mesenchymal Stem Cell Enriched Grafts in an Ovine Posterolateral Lumbar Spine Model , 2007, Spine.

[20]  F. Ravanetti,et al.  The critical sized bony defect: morphological study of bone healing , 2007 .

[21]  J. A. Aguirre Urízar,et al.  Maxillary sinus lift with intraoral autologous bone and B--tricalcium phosphate: histological and histomorphometric clinical study. , 2007, Medicina oral, patologia oral y cirugia bucal.

[22]  K. Shinomiya,et al.  Beta-tricalcium phosphate (beta-TCP) graft combined with bone marrow stromal cells (MSCs) for posterolateral spine fusion. , 2005, Journal of medical and dental sciences.

[23]  P. Windisch,et al.  [Experience with the clinical use of beta-tri-calcium phosphate (Cerasorb) as a bone replacement graft material in human periodontal osseous defects]. , 2002, Fogorvosi szemle.

[24]  Ulrich Joos,et al.  TCP is hardly resorbed and not osteoconductive in a non-loading calvarial model. , 2002, Biomaterials.

[25]  S. Kwon,et al.  The effects of calcium phosphate cement particles on osteoblast functions. , 2000, Biomaterials.

[26]  T. Einhorn Clinically applied models of bone regeneration in tissue engineering research. , 1999, Clinical orthopaedics and related research.