A multi-fidelity modelling approach to the statistical inference of the equivalent initial flaw size distribution for multiple-site damage
暂无分享,去创建一个
M. H. Aliabadi | Zahra Sharif Khodaei | Llewellyn Morse | M. H. Aliabadi | Z. S. Khodaei | Llewellyn Morse | L. Morse
[1] S. A. Fawaz. Equivalent initial flaw size testing and analysis of transport aircraft skin splices , 2003 .
[2] Andrew Makeev,et al. A concept for quantifying equivalent initial flaw size distribution in fracture mechanics based life prediction models , 2007 .
[3] Alan P. Berens,et al. Aircraft Structural Reliability and Risk Analysis Handbook Volume 1: Basic Analysis Methods , 2013 .
[4] Keisuke Tanaka,et al. Fatigue crack propagation from a crack inclined to the cyclic tensile axis , 1974 .
[5] Caroline Sainvitu,et al. Failure Probability Assessment using co-Kriging Surrogate Models , 2015 .
[6] Yaowu Xu,et al. Fatigue life prediction based on equivalent initial flaw size for Al-Li alloy 2297 under spectrum loading , 2017 .
[7] W. Steven Johnson. The history, logic and uses of the Equivalent Initial Flaw Size approach to total fatigue life prediction , 2010 .
[8] Zahra Sharif Khodaei,et al. A Bayesian Approach for Sensor Optimisation in Impact Identification , 2016, Materials.
[9] Andrew Makeev,et al. Simultaneous uncertainty quantification of fracture mechanics based life prediction model parameters , 2007 .
[10] Jun g Sik Kong,et al. Fatigue life prediction of multiple site damage based on probabilistic equivalent initial flaw model , 2011 .
[11] F. H. Hooke. Aircraft structural reliability and risk analysis , 1987 .
[12] Sankaran Mahadevan,et al. Inference of equivalent initial flaw size under multiple sources of uncertainty , 2011 .
[13] S. J Findlay,et al. Why aircraft fail , 2002 .
[14] Jun g Sik Kong,et al. Probabilistic fatigue integrity assessment in multiple crack growth analysis associated with equivalent initial flaw and material variability , 2016 .
[15] T. Simpson,et al. Use of Kriging Models to Approximate Deterministic Computer Models , 2005 .
[16] Sankaran Mahadevan,et al. Statistical inference of equivalent initial flaw size with complicated structural geometry and multi-axial variable amplitude loading , 2010 .
[17] F. Viana. Things you wanted to know about the Latin hypercube design and were afraid to ask , 2016 .
[18] Yan Bombardier,et al. Calculation of Equivalent Initial Flaw Size Distributions for Multiple Site Damage , 2014 .
[19] Paulo J. Tavares,et al. Fatigue Life Prediction Based on Crack Growth Analysis Using an Equivalent Initial Flaw Size Model: Application to a Notched Geometry , 2015 .
[20] Wei Zhang,et al. Fatigue Life Prediction Based on Crack Closure and Equivalent Initial Flaw Size , 2015, Materials.
[21] Roger Woodard,et al. Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.
[22] Iason Papaioannou,et al. Bayesian Updating with Structural Reliability Methods , 2015 .
[23] D. Rooke,et al. The dual boundary element method: Effective implementation for crack problems , 1992 .
[24] Pedro M.G.P. Moreira,et al. Fatigue striation spacing and equivalent initial flaw size in Al 2024-T3 riveted specimens , 2005 .
[25] Alexander I. J. Forrester,et al. Multi-fidelity optimization via surrogate modelling , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[26] Y. Xiang,et al. Crack growth-based fatigue life prediction using an equivalent initial flaw model . Part I : Uniaxial loading , 2009 .
[27] M. H. Aliabadi,et al. Boundary Element Analysis of Fatigue Crack Propagation in Stiffened Panels , 1998 .
[28] P. C. Paris,et al. The fracture mechanics approach to fatigue. , 1964 .
[29] A. J. Green,et al. Characterisation of equivalent initial flaw sizes in 7050 aluminium alloy , 2006 .
[30] S. Fawaz. Equivalent Initial Flaw Size Testing and Analysis , 2000 .
[31] N. Dowling,et al. Mechanical Behavior of Materials , 2012 .
[32] J. Lankford,et al. Relevance of the small crack problem to lifetime prediction in gas turbines , 1987 .
[33] D. P. Rooke,et al. Dual boundary element incremental analysis of crack propagation , 1993 .
[34] Jianqiao Chen,et al. Time-Dependent Reliability Model of Deteriorating Structures Based on Stochastic Processes and Bayesian Inference Methods , 2015 .
[35] Simon Barter,et al. Interpreting fatigue test results using a probabilistic fracture approach , 2005 .
[36] M. H. Aliabadi,et al. Multi-Fidelity Modeling-Based Structural Reliability Analysis with the Boundary Element Method , 2017 .
[37] Yongming Liu,et al. Probabilistic fatigue life prediction using an equivalent initial flaw size distribution , 2009 .
[38] John A. Newman,et al. A Novel Approach to Rotorcraft Damage Tolerance , 2002 .
[39] M. E. Haddad,et al. Prediction of non propagating cracks , 1979 .