Symmetric finite volume element approximations of second order linear hyperbolic integro-differential equations

In this paper, based on barycenter dual meshes, we develop one semi-discrete and two full discrete symmetric finite volume element schemes for second order linear hyperbolic integro-differential equations. The optimal order error estimates in L 2 and H 1 -norms are derived for the semi-discrete scheme. Numerical experiments confirm the performance of the symmetric schemes, and further show that the L 2 -norm convergence rate of the full discrete backward Euler and Crank-Nicolson schemes to be O ( h 2 + ? ) and O ( h 2 + ? 2 ) , respectively.

[1]  Shi Shu,et al.  Symmetric finite volume discretizations for parabolic problems , 2003 .

[2]  Richard E. Ewing,et al.  Some new error estimates of a semidiscrete finite volume element method for a parabolic integro-differential equation with nonsmooth initial data , 2006, SIAM J. Numer. Anal..

[3]  Richard E. Ewing,et al.  Element Approximations of Nonlocal in Time One � dimensional Flows in Porous Media , 1998 .

[4]  Yirang Yuan,et al.  A symmetric characteristic FVE method with second order accuracy for nonlinear convection diffusion problems , 2007 .

[5]  Vidar Thomée,et al.  Numerical methods for hyperbolic and parabolic integro-differential equations , 1992 .

[6]  Shengde Liang,et al.  Finite Volume Methods for Eigenvalue Problems , 2001 .

[7]  Chuanjun Chen,et al.  ADI quadratic finite volume element methods for second order hyperbolic problems , 2009 .

[8]  A. K. Pani,et al.  A priori hp-estimates for discontinuous Galerkin approximations to linear hyperbolic integro-differential equations , 2014, 1401.5539.

[9]  Amiya K. Pani,et al.  Finite volume element method for second order hyperbolic equations , 2008 .

[10]  H. Rui Symmetric modified finite volume element methods for self-adjoint elliptic and parabolic problems , 2002 .

[11]  Vassilios A. Dougalis,et al.  The Effect of Quadrature Errors on Finite Element Approximations for Second Order Hyperbolic Equations , 1976 .

[12]  R. Lazarov,et al.  Finite volume element approximations of nonlocal reactive flows in porous media , 2000 .

[13]  Yunqing Huang,et al.  A SYMMETRIC FINITE VOLUME ELEMENT SCHEME ON QUADRILATERAL GRIDS AND SUPERCONVERGENCE , 2006 .

[14]  Amiya Kumar Pani,et al.  Optimal error estimates of mixed FEMs for second order hyperbolic integro-differential equations with minimal smoothness on initial data , 2015, J. Comput. Appl. Math..

[15]  Ronghua Li Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods , 2000 .

[16]  Huang Jianguo,et al.  On the Finite Volume Element Method for General Self-Adjoint Elliptic Problems , 1998 .

[17]  Wei Liu,et al.  A two-grid method for finite volume element approximations of second-order nonlinear hyperbolic equations , 2010, J. Comput. Appl. Math..

[18]  R. K. Sinha Finite element approximations with quadrature for second‐order hyperbolic equations , 2002 .

[19]  Galerkin methods and L2-error estimates for hyperbolic integro-differential equations , 1989 .

[20]  Xiaoying Dai,et al.  Symmetric finite volume schemes for eigenvalue problems in arbitrary dimensions , 2008 .

[21]  Shengde Liang,et al.  A symmetric finite volume scheme for selfadjoint elliptic problems , 2002 .

[22]  A. K. Pani,et al.  A priori error estimates for finite volume element approximations to second order linear hyperbolic integro-differential equations , 2014, 1401.5139.

[23]  Y. Lin,et al.  Finite volume element methods : an overview on recent developments , 2013 .

[24]  Qian Li,et al.  Error estimates in L2, H1 and Linfinity in covolume methods for elliptic and parabolic problems: A unified approach , 1999, Math. Comput..

[25]  G. A. Baker Error Estimates for Finite Element Methods for Second Order Hyperbolic Equations , 1976 .

[26]  Yonghai Li,et al.  Biquadratic finite volume element method based on optimal stress points for second order hyperbolic equations , 2013 .

[27]  Graeme Fairweather,et al.  An alternating direction Galerkin method for a class of second-order hyperbolic equations in two space variables , 1991 .

[28]  A. K. Pani,et al.  The effect of spatial quadrature on finite element galerkin approximations to hyperbolic integro-differential equations , 1998 .