Optimal Intelligent Control for HVAC Systems

In this paper a novel Optimal Fuzzy Proportional-Integral-Derivative Controller (OFPIDC) is designed for controlling the air supply pressure of Heating, Ventilation and Air-Conditioning (HVAC) system. The parameters of input membership functions, output polynomial functions of first-order Sugeno, and PID controller coefficients are optimized simultaneously by random inertia weight Particle Swarm Optimization (RNW-PSO). Simulation results show the superiority of the proposed controller than similar non-optimal fuzzy controller

[1]  Celina Filippín,et al.  Thermal behavior of building walls in summer: Comparison of available analytical methods and experimental results for a case study , 2009 .

[2]  Rajani K. Mudi,et al.  Self-Tuning Fuzzy PI Controller and its Application to HVAC Systems , 2008 .

[3]  J. Stoustrup,et al.  Optimal model-based control in HVAC systems , 2008, 2008 American Control Conference.

[4]  Yong Zhang,et al.  Advanced controller auto-tuning and its application in HVAC systems , 2000 .

[5]  Russell C. Eberhart,et al.  Tracking and optimizing dynamic systems with particle swarms , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[6]  Prahlad Patel,et al.  Modeling and optimal control algorithm design for HVAC systems in energy efficient buildings , 2013 .

[7]  H. Rasmussen,et al.  Optimal Set-point Synthesis in HVAC Systems , 2007, 2007 American Control Conference.

[8]  Hyun-Joon Cho,et al.  Fuzzy-PID hybrid control: Automatic rule generation using genetic algorithms , 1997, Fuzzy Sets Syst..

[9]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[10]  Hamidreza Modares,et al.  Parameter estimation of bilinear systems based on an adaptive particle swarm optimization , 2010, Eng. Appl. Artif. Intell..

[11]  Wu Jian,et al.  Development of an adaptive neuro-fuzzy method for supply air pressure control in HVAC system , 2000 .

[12]  Hung T. Nguyen,et al.  A First Course in Fuzzy and Neural Control , 2002 .

[13]  Wenjian Cai,et al.  A PRACTICAL DECENTRALIZED PID AUTO-TUNING METHOD FOR TITO SYSTEMS UNDER CLOSED-LOOP CONTROL , 2006 .

[14]  Masaharu Mizumoto,et al.  PID type fuzzy controller and parameters adaptive method , 1996, Fuzzy Sets Syst..

[15]  E. Mizutani,et al.  Neuro-Fuzzy and Soft Computing-A Computational Approach to Learning and Machine Intelligence [Book Review] , 1997, IEEE Transactions on Automatic Control.

[16]  Mohammad A. Jaradat,et al.  Optimal PI-fuzzy logic controller of glucose concentration using genetic algorithm , 2011, Int. J. Knowl. Based Intell. Eng. Syst..

[17]  Rajani K. Mudi,et al.  A robust self-tuning scheme for PI- and PD-type fuzzy controllers , 1999, IEEE Trans. Fuzzy Syst..

[18]  Shangxu Hu,et al.  A New Approach to Improve Particle Swarm Optimization , 2003, GECCO.

[19]  Dr. Hans Hellendoorn,et al.  An Introduction to Fuzzy Control , 1996, Springer Berlin Heidelberg.

[20]  Witold Pedrycz,et al.  Optimization of fuzzy models , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[21]  Qiang Bi,et al.  Multivariable controller auto-tuning with its application in HVAC systems , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[22]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[23]  Z. R. Radakovic,et al.  Application of temperature fuzzy controller in an indirect resistance furnace , 2002 .

[24]  Miguel Velez-Reyes,et al.  Nonlinear control of a heating, ventilating, and air conditioning system with thermal load estimation , 1999, IEEE Trans. Control. Syst. Technol..

[25]  Francisco Herrera,et al.  A genetic rule weighting and selection process for fuzzy control of heating, ventilating and air conditioning systems , 2005, Eng. Appl. Artif. Intell..