Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells.
暂无分享,去创建一个
Debora Keller | Shiro Nishiwaki | Stephan Buecheler | Rolf Erni | Lukas Kranz | L. Kranz | S. Nishiwaki | A. Chirilă | A. Tiwari | S. Buecheler | R. Erni | P. Reinhard | F. Pianezzi | A. Uhl | C. Fella | P. Bloesch | D. Keller | C. Gretener | H. Hagendorfer | D. Jaeger | Patrick Reinhard | Fabian Pianezzi | Dominik Jaeger | Harald Hagendorfer | Alexander R Uhl | Christina Gretener | Ayodhya N Tiwari | Adrian Chirilă | Patrick Bloesch | Carolin Fella
[1] K. Granath,et al. Growth of Cu(In,Ga)Se2 thin films by coevaporation using alkaline precursors , 2000 .
[2] H. Schock,et al. Confined and Chemically Flexible Grain Boundaries in Polycrystalline Compound Semiconductors , 2012 .
[3] Martin A. Green,et al. Solar cell efficiency tables (version 41) , 2013 .
[4] H. Jenny. Studies on the Mechanism of Ionic Exchange in Colloidal Aluminum Silicates , 1931 .
[5] Vasilis Fthenakis,et al. Photovoltaic manufacturing: Present status, future prospects, and research needs , 2011 .
[6] T. Nakada,et al. Direct evidence of Cd diffusion into Cu(In, Ga)Se2 thin films during chemical-bath deposition process of CdS films , 1999 .
[7] Michael Grätzel,et al. Photoelectrochemical cells , 2001, Nature.
[8] J. Bernède,et al. ORGANIC PHOTOVOLTAIC CELLS: HISTORY, PRINCIPLE AND TECHNIQUES , 2008 .
[9] Martin E. Nordberg,et al. Strengthening by Ion Exchange , 1964 .
[10] C. Felser,et al. Theoretical Study on the Structure and Energetics of Cd Insertion and Cu Depletion of CuIn5Se8 , 2013 .
[11] K. Chopra,et al. The preparation of Cu2S films for solar cells , 1978 .
[12] Feng Zhao,et al. Two-step K(+)-Na+ and Ag(+)-Na+ ion-exchanged glass waveguides for C-band applications. , 2002, Applied optics.
[13] W. Jaegermann,et al. Fermi level-dependent defect formation at Cu(In,Ga)Se2 interfaces , 2000 .
[14] D. Abou‐Ras,et al. Characterization of Grain Boundaries in Cu(In,Ga)Se$_{\bf 2}$ Films Using Atom-Probe Tomography , 2011, IEEE Journal of Photovoltaics.
[15] M. Grätzel. Photoelectrochemical cells : Materials for clean energy , 2001 .
[16] D. Hariskos,et al. New world record efficiency for Cu(In,Ga)Se2 thin‐film solar cells beyond 20% , 2011 .
[17] S. K. Deb. Thin-film solar cells: An overview , 1996 .
[18] F. Kessler,et al. Technological aspects of flexible CIGS solar cells and modules , 2004 .
[19] J. Werner,et al. High quality baseline for high efficiency, Cu(In1−x,Gax)Se2 solar cells , 2007 .
[20] S. Nishiwaki,et al. Review of progress toward 20% efficiency flexible CIGS solar cells and manufacturing issues of solar modules , 2012, 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2.
[21] H. Zogg,et al. Sodium incorporation strategies for CIGS growth at different temperatures , 2005 .
[22] P. Mahadevan,et al. An overview , 2007, Journal of Biosciences.
[23] Shigeru Niki,et al. Flexible Cu(In,Ga)Se2 solar cells fabricated using alkali-silicate glass thin layers as an alkali source material , 2009 .
[24] Lei Gao,et al. History, Principle and Techniques for Waveform Optimization in External Defibrillations , 2012 .
[25] A. Eicke,et al. CIGS thin-film solar cells and modules on enamelled steel substrates , 2012 .
[26] L. Kronik,et al. Oxygenation and air-annealing effects on the electronic properties of Cu(In,Ga)Se2 films and devices , 1999 .
[27] Shiro Nishiwaki,et al. Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films. , 2011, Nature materials.
[28] A. Clearfield. Role of Ion Exchange in Solid‐State Chemistry , 1988 .
[29] Rommel Noufi,et al. Optimization of CBD CdS process in high-efficiency Cu(In, Ga)Se2-based solar cells , 2002 .
[30] P. Jain,et al. Cation Exchange on the Nanoscale: An Emerging Technique for New Material Synthesis, Device Fabrication, and Chemical Sensing , 2013 .