High performance 0.1 /spl mu/m gate-length p-type SiGe MODFET's and MOS-MODFET's

High performance p-type modulation-doped field-effect transistors (MODFET's) and metal-oxide-semiconductor MODFET (MOS-MODFET) with 0.1 /spl mu/m gate-length have been fabricated on a high hole mobility SiGe-Si heterojunction grown by ultrahigh vacuum chemical vapor deposition. The MODFET devices exhibited an extrinsic transconductance (g/sub m/) of 142 mS/mm, a unity current gain cut-off frequency (f/sub T/) of 45 GHz and a maximum oscillation frequency (f/sub MAX/) of 81 GHz, 5 nm-thick high quality jet-vapor-deposited (JVD) SiO/sub 2/ was utilized as gate dielectric for the MOS-MODFET's. The devices exhibited a lower gate leakage current (1 nA//spl mu/m at V/sub gs/=6 V) and a wider gate operating voltage swing in comparison to the MODFET's. However, due to the larger gate-to-channel distance and the existence of a parasitic surface channel, MOS-MODFET's demonstrated a smaller peak g/sub m/ of 90 mS/mm, f/sub T/ of 38 GHz, and f/sub max/ of 64 GHz. The threshold voltage shifted from 0.45 V for MODFET's to 1.33 V for MOS-MODFET's. A minimum noise figure (NF/sub min/) of 1.29 dB and an associated power gain (G/sub a/) of 12.8 dB were measured at 2 GHz for MODFET's, while the MOS-MODFET's exhibited a NF/sub min/ of 0.92 dB and a G/sub a/ of 12 dB at 2 GHz. These DC, RF, and high frequency noise characteristics make SiGe/Si MODFET's and MOS-MODFET's excellent candidates for wireless communications.

[1]  D. Antoniadis,et al.  Deep submicron CMOS based on silicon germanium technology , 1996 .

[2]  High performance 0.25 [micro sign]m p-type Ge/SiGe MODFETs , 1998 .

[3]  K. Nakagawa,et al.  Fabrication of strain-controlled SiGe/Ge MODFET with ultrahigh hole mobility , 1994 .

[4]  P. M. Asbeck,et al.  Advanced thin-film silicon-on-sapphire technology: microwave circuit applications , 1998 .

[5]  J. Welser,et al.  Enhanced hole mobilities in surface-channel strained-Si p-MOSFETs , 1995, Proceedings of International Electron Devices Meeting.

[6]  M. Gluck,et al.  HIGH FMAX N-TYPE SI/SIGE MODFETS , 1997 .

[7]  John D. Cressler,et al.  Base-profile optimization for minimum noise figure in advanced UHV/CVD SiGe HBT's , 1998 .

[8]  Guofu Niu,et al.  Hole confinement and low-frequency noise in SiGe pFETs on silicon-on-sapphire , 1999, IEEE Electron Device Letters.

[9]  B. Meyerson,et al.  DC and RF performance of 0.25 μm p-type SiGe MODFET , 1996, IEEE Electron Device Letters.

[10]  D. Harame,et al.  High-mobility modulation-doped SiGe-channel p-MOSFETs , 1991, IEEE Electron Device Letters.

[11]  J. Nocera,et al.  High-transconductance n-type Si/SiGe modulation-doped field-effect transistors , 1992, IEEE Electron Device Letters.

[12]  I. Adesida,et al.  p-Type SiGe transistors with low gate leakage using SiN gate dielectric , 1999, IEEE Electron Device Letters.

[13]  C. Park,et al.  Ultra low noise characteristics of AlGaAs/InGaAs/GaAs pseudomorphic HEMT's with wide head T-shaped gate , 1995 .

[14]  G. Gonzalez Microwave Transistor Amplifiers: Analysis and Design , 1984 .

[15]  B. Meyerson,et al.  Submicrometer p-type SiGe modulation-doped field-effect transistors for high speed applications , 1997 .

[16]  I. Adesida,et al.  A 70-GHz f/sub T/ low operating bias self-aligned p-type SiGe MODFET , 1996, IEEE Electron Device Letters.

[17]  Y. Yamane,et al.  Extremely low-noise performance of GaAs MESFETs with wide-head T-shaped gate , 1999 .

[18]  D. Harame,et al.  SiGe-channel heterojunction p-MOSFET's , 1994 .

[19]  Ryuichi Fujimoto,et al.  0.15-/spl mu/m RF CMOS technology compatible with logic CMOS for low-voltage operation , 1998 .

[20]  Tso-Ping Ma,et al.  Making silicon nitride film a viable gate dielectric , 1998 .