AN INFORMATION-THEORETIC APPROACH TO OPTIMIZE JWST OBSERVATIONS AND RETRIEVALS OF TRANSITING EXOPLANET ATMOSPHERES

We provide an example of an analysis to explore the optimization of observations of transiting hot jupiters with JWST to characterize their atmospheres, based on a simple three-parameter forward model. We construct expansive forward model sets for eleven hot jupiters, ten of which are relatively well-characterized, exploring a range of parameters such as equilibrium temperature and metallicity, as well as considering host stars over a wide range in brightness. We compute posterior distributions of our model parameters for each planet with all of the available JWST spectroscopic modes and several programs of combined observations and compute their effectiveness using the metric of estimated mutual information per degree of freedom. From these simulations, clear trends emerge that provide guidelines for designing a JWST observing program. We demonstrate that these guidelines apply over a wide range of planet parameters and target brightnesses for our simple forward model.

[1]  A. Burrows,et al.  THEORETICAL TRANSIT SPECTRA FOR GJ 1214b AND OTHER “SUPER-EARTHS” , 2012, 1203.1921.

[2]  Jarron Leisenring,et al.  Two NIRCam Channels are Better than One: How JWST Can Do More Science with NIRCam’s Short-wavelength Dispersed Hartmann Sensor , 2016, 1610.02026.

[3]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[4]  D. Lindley On a Measure of the Information Provided by an Experiment , 1956 .

[5]  B. Enoch,et al.  The WASP Project and the SuperWASP Cameras , 2006, astro-ph/0608454.

[6]  M. R. Line,et al.  INFORMATION CONTENT OF EXOPLANETARY TRANSIT SPECTRA: AN INITIAL LOOK , 2011, 1111.2612.

[7]  K. Stanek,et al.  Wide‐Field Millimagnitude Photometry with the HAT: A Tool for Extrasolar Planet Detection , 2004, astro-ph/0401219.

[8]  Mark Clampin,et al.  Discovery and Characterization of Transiting SuperEarths Using an All-Sky Transit Survey and Follow-Up by the James Webb Space Telescope , 2010 .

[9]  Gautam Vasisht,et al.  Observations of Transiting Exoplanets with the James Webb Space Telescope (JWST) , 2014, 1411.1754.

[10]  A. Burrows,et al.  Atomic and Molecular Opacities for Brown Dwarf and Giant Planet Atmospheres , 2006, astro-ph/0607211.

[11]  Drake Deming,et al.  A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion , 2016, Nature.

[12]  Carnegie,et al.  HAT-P-1b: A Large-Radius, Low-Density Exoplanet Transiting One Member of a Stellar Binary* ** , 2007 .

[13]  R. G. West,et al.  WASP-39b: a highly inflated Saturn-mass planet orbiting a late G-type star , 2011, 1102.1375.

[14]  Heather A. Knutson,et al.  Extrasolar planets: Water on distant worlds , 2007, Nature.

[15]  Drake Deming,et al.  EXOPLANET TRANSIT SPECTROSCOPY USING WFC3: WASP-12 b, WASP-17 b, AND WASP-19 b , 2013, 1310.2949.

[16]  Gautam Vasisht,et al.  The presence of methane in the atmosphere of an extrasolar planet , 2008, Nature.

[17]  J. Fortney,et al.  THE MASS–METALLICITY RELATION FOR GIANT PLANETS , 2015, 1511.07854.

[18]  Sarah Kendrew,et al.  Transit spectroscopy with James Webb Space Telescope: systematics, starspots and stitching , 2015, 1501.06349.

[19]  Kyle L. Luther,et al.  CHARACTERIZING TRANSITING EXOPLANET ATMOSPHERES WITH JWST , 2015, 1511.05528.

[20]  S. Aigrain,et al.  HST hot-Jupiter transmission spectral survey: detection of potassium in WASP-31b along with a cloud deck and Rayleigh scattering , 2014, 1410.7611.

[21]  A. Belu,et al.  Thermal phase curves of nontransiting terrestrial exoplanets - II. Characterizing airless planets , 2011, 1110.3087.

[22]  A. Burrows Spectra as windows into exoplanet atmospheres , 2013, Proceedings of the National Academy of Sciences.

[23]  Alistair Glasse,et al.  The Mid-Infrared Instrument for the James Webb Space Telescope, IX: Predicted Sensitivity , 2015, 1508.02427.

[24]  L. Doyle,et al.  Detection of Planetary Transits of the Star HD 209458 in the Hipparcos Data Set , 2000, The Astrophysical journal.

[25]  R. Gilliland,et al.  Detection of an Extrasolar Planet Atmosphere , 2001, astro-ph/0111544.

[26]  Michel Mayor,et al.  ELODIE metallicity-biased search for transiting Hot Jupiters. II. A very hot Jupiter transiting the bright K star HD 189733 , 2005 .

[27]  A Spitzer* Infrared Radius for the Transiting Extrasolar Planet HD 209458b , 2006, astro-ph/0606096.

[28]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[29]  Jonathan Tennyson,et al.  TAU-REX I: A NEXT GENERATION RETRIEVAL CODE FOR EXOPLANETARY ATMOSPHERES , 2014, 1409.2312.

[30]  T. Owen,et al.  Updated Galileo probe mass spectrometer measurements of carbon, oxygen, nitrogen, and sulfur on Jupiter , 2004 .

[31]  R. G. West,et al.  WASP-17b: AN ULTRA-LOW DENSITY PLANET IN A PROBABLE RETROGRADE ORBIT , 2009, 0908.1553.

[32]  Jonathan Tennyson,et al.  BLIND EXTRACTION OF AN EXOPLANETARY SPECTRUM THROUGH INDEPENDENT COMPONENT ANALYSIS , 2013, 1301.4041.

[33]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[34]  Edinburgh,et al.  The Mid-Infrared Instrument for the James Webb Space Telescope: IV. The Low Resolution Spectrometer , 2015 .

[35]  G. Laughlin,et al.  Discovery and Characterization of Transiting Super Earths Using an All-Sky Transit Survey and Follow-up by the James Webb Space Telescope , 2009, 0903.4880.

[36]  A. Burrows,et al.  ATMOSPHERE AND SPECTRAL MODELS OF THE KEPLER-FIELD PLANETS HAT-P-7b AND TrES-2 , 2010, 1006.1660.

[37]  David G. Monet,et al.  KEPLER-7b: A TRANSITING PLANET WITH UNUSUALLY LOW DENSITY , 2009, 1001.0190.

[38]  Mark R. Swain,et al.  0.94–2.42 μm GROUND-BASED TRANSMISSION SPECTRA OF THE HOT JUPITER HD-189733b , 2013 .

[39]  Andreas Seifahrt,et al.  A Search for Water in the Atmosphere of HAT-P-26b Using LDSS-3C , 2015 .

[40]  D. Rouan,et al.  Constraining physics of very hot super-Earths with the James Webb Telescope. The case of CoRot-7b , 2014, 1402.6637.

[41]  Khadeejah A. Zamudio,et al.  PLANETARY CANDIDATES OBSERVED BY KEPLER. VII. THE FIRST FULLY UNIFORM CATALOG BASED ON THE ENTIRE 48-MONTH DATA SET (Q1–Q17 DR24) , 2015, 1512.06149.

[42]  G. Hebrard,et al.  Transit spectrophotometry of the exoplanet HD189733b. I. Searching for water but finding haze with HST NICMOS , 2009, 0907.4991.

[43]  UC Berkeley,et al.  HAT-P-12b: A LOW-DENSITY SUB-SATURN MASS PLANET TRANSITING A METAL-POOR K DWARF , 2009, 0904.4704.

[44]  M. Line,et al.  A SYSTEMATIC RETRIEVAL ANALYSIS OF SECONDARY ECLIPSE SPECTRA. III. DIAGNOSING CHEMICAL DISEQUILIBRIUM IN PLANETARY ATMOSPHERES , 2013, 1309.6679.

[45]  G. Tinetti,et al.   ?> -REx. II. RETRIEVAL OF EMISSION SPECTRA , 2015, 1508.07591.

[46]  Gregory S. Tucker,et al.  Transiting Exoplanet Studies and Community Targets for JWST's Early Release Science Program , 2016, 1602.08389.

[47]  George H. Rieke,et al.  Sensitivity estimates for the mid-infrared instrument (MIRI) on the JWST , 2004, SPIE Astronomical Telescopes + Instrumentation.

[48]  D. Ehrenreich,et al.  SEARCH FOR CARBON MONOXIDE IN THE ATMOSPHERE OF THE TRANSITING EXOPLANET HD 189733b , 2009, 0903.3405.

[49]  Fang Shi,et al.  Observing exoplanets with the JWST NIRCam grisms , 2007, SPIE Optical Engineering + Applications.

[50]  Huib Visser,et al.  The Mid-Infrared Instrument for the James Webb Space Telescope, VI: The Medium Resolution Spectrometer , 2015, 1508.03070.

[51]  R. G. West,et al.  WASP-12b: THE HOTTEST TRANSITING EXTRASOLAR PLANET YET DISCOVERED , 2008, 0812.3240.

[52]  C. Hansen,et al.  Features in the broad-band eclipse spectra of exoplanets: signal or noise? , 2014, 1402.6699.

[53]  R. G. West,et al.  WASP-19b: THE SHORTEST PERIOD TRANSITING EXOPLANET YET DISCOVERED , 2010, 1001.0403.

[54]  D. Crisp,et al.  A SYSTEMATIC RETRIEVAL ANALYSIS OF SECONDARY ECLIPSE SPECTRA. I. A COMPARISON OF ATMOSPHERIC RETRIEVAL TECHNIQUES , 2013, 1304.5561.

[55]  Michael R. Line,et al.  THE INFLUENCE OF NONUNIFORM CLOUD COVER ON TRANSIT TRANSMISSION SPECTRA , 2015, 1511.09443.

[56]  A. Collier Cameron,et al.  Discovery and characterization of WASP-6b, an inflated sub-Jupiter mass planet transiting a solar-type star , 2009, 0901.4705.

[57]  Mark Clampin,et al.  INFRARED TRANSMISSION SPECTROSCOPY OF THE EXOPLANETS HD 209458b AND XO-1b USING THE WIDE FIELD CAMERA-3 ON THE HUBBLE SPACE TELESCOPE , 2013, 1302.1141.

[58]  Peter Rumler,et al.  Status of the JWST/NIRSpec instrument , 2014, Astronomical Telescopes and Instrumentation.

[59]  N. Crouzet,et al.  WATER VAPOR IN THE SPECTRUM OF THE EXTRASOLAR PLANET HD 189733b. I. THE TRANSIT , 2014, 1407.2462.

[60]  S. Calcutt,et al.  The NEMESIS planetary atmosphere radiative transfer and retrieval tool , 2008 .

[61]  S. Aigrain,et al.  The prevalence of dust on the exoplanet HD 189733b from Hubble and Spitzer observations , 2012, 1210.4163.

[62]  Neil Rowlands,et al.  The JWST Fine Guidance Sensor (FGS) and Near-Infrared Imager and Slitless Spectrograph (NIRISS) , 2012, Other Conferences.

[63]  David Charbonneau,et al.  Theoretical Spectral Models of the Planet HD 209458b with a Thermal Inversion and Water Emission Bands , 2007, 0709.3980.