Isogeometric analysis for 2D and 3D curl–div problems: Spectral symbols and fast iterative solvers

Abstract Alfven-like operators are of interest in magnetohydrodynamics, which is used in plasma physics to study the macroscopic behavior of plasma. Motivated by this important and complex application, we focus on a parameter-dependent curl–div problem that can be seen as a prototype of an Alfven-like operator, and we discretize it using isogeometric analysis based on tensor-product B-splines. The involved coefficient matrices can be very ill-conditioned, so that standard numerical solution methods perform quite poorly here. In order to overcome the difficulties caused by such ill-conditioning, a two-step strategy is proposed. First, we conduct a detailed spectral study of the coefficient matrices, highlighting the critical dependence on the different physical and approximation parameters. Second, we exploit such spectral information to design fast iterative solvers for the corresponding linear systems. For the first goal we apply the theory of (multilevel block) Toeplitz and generalized locally Toeplitz sequences, while for the second we use a combination of multigrid techniques and preconditioned Krylov solvers. Several numerical tests are provided both for the study of the spectral problem and for the solution of the corresponding linear systems.

[1]  Patrick Ciarlet,et al.  Augmented formulations for solving Maxwell equations , 2005 .

[2]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[3]  S. Serra,et al.  Multi-iterative methods , 1993 .

[4]  Hendrik Speleers,et al.  Robust and optimal multi-iterative techniques for IgA Galerkin linear systems , 2015 .

[5]  Hendrik Speleers,et al.  On the spectrum of stiffness matrices arising from isogeometric analysis , 2014, Numerische Mathematik.

[6]  Clemens Hofreither,et al.  Robust Multigrid for Isogeometric Analysis Based on Stable Splittings of Spline Spaces , 2016, SIAM J. Numer. Anal..

[7]  X. Garbet,et al.  Mechanism of edge localized mode mitigation by resonant magnetic perturbations. , 2014, Physical review letters.

[8]  Paolo Tilli,et al.  Locally Toeplitz sequences: spectral properties and applications , 1998 .

[9]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[10]  Thomas J. R. Hughes,et al.  Isogeometric divergence-conforming B-splines for the unsteady Navier-Stokes equations , 2013, J. Comput. Phys..

[11]  Stefano Serra Capizzano,et al.  Block Generalized Locally Toeplitz Sequences: From the Theory to the Applications , 2018, Axioms.

[12]  Hendrik Speleers,et al.  Robust and optimal multi-iterative techniques for IgA Galerkin linear systems This is a preprint of a paper published in Comput. Methods Appl. Mech. Engrg. 284 (2015) 230264. , 2015 .

[13]  Stefano Serra Capizzano,et al.  Multigrid Methods for Symmetric Positive Definite Block Toeplitz Matrices with Nonnegative Generating Functions , 1996, SIAM J. Sci. Comput..

[14]  A. Stanier,et al.  A scalable, fully implicit algorithm for the reduced two-field low-β extended MHD model , 2016, J. Comput. Phys..

[15]  M. Cessenat MATHEMATICAL METHODS IN ELECTROMAGNETISM: LINEAR THEORY AND APPLICATIONS , 1996 .

[16]  Stephen C. Jardin,et al.  Computational Methods in Plasma Physics , 2010 .

[17]  Mehdi Dehghan,et al.  Spectral analysis and multigrid preconditioners for two-dimensional space-fractional diffusion equations , 2017, J. Comput. Phys..

[18]  Giancarlo Sangalli,et al.  BPX-preconditioning for isogeometric analysis , 2013 .

[19]  Carlo Garoni,et al.  Generalized Locally Toeplitz Sequences: Theory and Applications: Volume I , 2017 .

[20]  M. Costabel A coercive bilinear form for Maxwell's equations , 1991 .

[21]  L Chacón,et al.  Scalable parallel implicit solvers for 3D magnetohydrodynamics , 2008 .

[22]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[23]  R. Bhatia Matrix Analysis , 1996 .

[24]  S. Serra Capizzano,et al.  Some theorems on linear positive operators and functionals and their applications , 2000 .

[25]  Mark S. Shephard,et al.  The M3D-C1 approach to simulating 3D 2-fluid magnetohydrodynamics in magnetic fusion experiments , 2008 .

[26]  E. E. Tyrtyshnikov A unifying approach to some old and new theorems on distribution and clustering , 1996 .

[27]  Giles Auchmuty,et al.  ²-well-posedness of 3d div-curl boundary value problems , 2005 .

[28]  Stefano Serra-Capizzano,et al.  The GLT class as a generalized Fourier analysis and applications , 2006 .

[29]  Stefano Serra Capizzano,et al.  V-cycle Optimal Convergence for Certain (Multilevel) Structured Linear Systems , 2004, SIAM J. Matrix Anal. Appl..

[30]  Paolo Tilli,et al.  A note on the spectral distribution of toeplitz matrices , 1998 .

[31]  J. Alexander L-WELL-POSEDNESS OF 3D DIV-CURL BOUNDARY VALUE PROBLEMS , 2004 .

[32]  Carlo Garoni,et al.  The theory of block generalized locally Toeplitz sequences , 2018 .

[33]  Giancarlo Sangalli,et al.  Isogeometric Preconditioners Based on Fast Solvers for the Sylvester Equation , 2016, SIAM J. Sci. Comput..

[34]  Paul T. Lin,et al.  Towards a scalable fully-implicit fully-coupled resistive MHD formulation with stabilized FE methods , 2009, J. Comput. Phys..

[35]  Carlo Garoni,et al.  Generalized locally Toeplitz sequences : Theory and applications , 2017 .

[36]  Michael Pernice,et al.  Implicit adaptive mesh refinement for 2D reduced resistive magnetohydrodynamics , 2008, J. Comput. Phys..

[37]  Maya Neytcheva,et al.  Spectral analysis of coupled PDEs and of their Schur complements via Generalized Locally Toeplitz sequences in 2D , 2016 .

[38]  Hendrik Speleers,et al.  Spectral analysis and spectral symbol of matrices in isogeometric collocation methods , 2015, Math. Comput..

[39]  Marco Donatelli,et al.  A V-cycle Multigrid for multilevel matrix algebras: proof of optimality , 2007, Numerische Mathematik.

[40]  Stefano Serra Capizzano,et al.  Spectral analysis and spectral symbol for the 2D curl-curl (stabilized) operator with applications to the related iterative solutions , 2016, Math. Comput..

[41]  Pierre Ramet,et al.  Non-linear MHD simulations of edge localized modes (ELMs) , 2009 .

[42]  Ronald H. W. Hoppe,et al.  Finite element methods for Maxwell's equations , 2005, Math. Comput..

[43]  Thomas Huckle,et al.  Multigrid Preconditioning and Toeplitz Matrices , 2002 .

[44]  Carlo Garoni,et al.  Generalized Locally Toeplitz Sequences , 2017 .

[45]  Hendrik Speleers,et al.  Spectral analysis and spectral symbol of matrices in isogeometric Galerkin methods , 2017, Math. Comput..

[46]  Hendrik Speleers,et al.  Symbol-Based Multigrid Methods for Galerkin B-Spline Isogeometric Analysis , 2017, SIAM J. Numer. Anal..

[47]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[48]  Hendrik Speleers,et al.  Lusin theorem, GLT sequences and matrix computations: An application to the spectral analysis of PDE discretization matrices , 2017 .

[49]  Eugene E. Tyrtyshnikov,et al.  Spectra of multilevel toeplitz matrices: Advanced theory via simple matrix relationships , 1998 .

[50]  Douglas N. Arnold,et al.  Mixed finite element approximation of the vector Laplacian with Dirichlet boundary conditions , 2011, 1109.3668.

[51]  Stefano Serra Capizzano,et al.  On the Asymptotic Spectrum of Finite Element Matrix Sequences , 2007, SIAM J. Numer. Anal..