Isogeometric analysis for 2D and 3D curl–div problems: Spectral symbols and fast iterative solvers
暂无分享,去创建一个
Hendrik Speleers | Carla Manni | Ahmed Ratnani | Mariarosa Mazza | Stefano Serra-Capizzano | S. Serra-Capizzano | H. Speleers | C. Manni | A. Ratnani | M. Mazza
[1] Patrick Ciarlet,et al. Augmented formulations for solving Maxwell equations , 2005 .
[2] Carl de Boor,et al. A Practical Guide to Splines , 1978, Applied Mathematical Sciences.
[3] S. Serra,et al. Multi-iterative methods , 1993 .
[4] Hendrik Speleers,et al. Robust and optimal multi-iterative techniques for IgA Galerkin linear systems , 2015 .
[5] Hendrik Speleers,et al. On the spectrum of stiffness matrices arising from isogeometric analysis , 2014, Numerische Mathematik.
[6] Clemens Hofreither,et al. Robust Multigrid for Isogeometric Analysis Based on Stable Splittings of Spline Spaces , 2016, SIAM J. Numer. Anal..
[7] X. Garbet,et al. Mechanism of edge localized mode mitigation by resonant magnetic perturbations. , 2014, Physical review letters.
[8] Paolo Tilli,et al. Locally Toeplitz sequences: spectral properties and applications , 1998 .
[9] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[10] Thomas J. R. Hughes,et al. Isogeometric divergence-conforming B-splines for the unsteady Navier-Stokes equations , 2013, J. Comput. Phys..
[11] Stefano Serra Capizzano,et al. Block Generalized Locally Toeplitz Sequences: From the Theory to the Applications , 2018, Axioms.
[12] Hendrik Speleers,et al. Robust and optimal multi-iterative techniques for IgA Galerkin linear systems This is a preprint of a paper published in Comput. Methods Appl. Mech. Engrg. 284 (2015) 230264. , 2015 .
[13] Stefano Serra Capizzano,et al. Multigrid Methods for Symmetric Positive Definite Block Toeplitz Matrices with Nonnegative Generating Functions , 1996, SIAM J. Sci. Comput..
[14] A. Stanier,et al. A scalable, fully implicit algorithm for the reduced two-field low-β extended MHD model , 2016, J. Comput. Phys..
[15] M. Cessenat. MATHEMATICAL METHODS IN ELECTROMAGNETISM: LINEAR THEORY AND APPLICATIONS , 1996 .
[16] Stephen C. Jardin,et al. Computational Methods in Plasma Physics , 2010 .
[17] Mehdi Dehghan,et al. Spectral analysis and multigrid preconditioners for two-dimensional space-fractional diffusion equations , 2017, J. Comput. Phys..
[18] Giancarlo Sangalli,et al. BPX-preconditioning for isogeometric analysis , 2013 .
[19] Carlo Garoni,et al. Generalized Locally Toeplitz Sequences: Theory and Applications: Volume I , 2017 .
[20] M. Costabel. A coercive bilinear form for Maxwell's equations , 1991 .
[21] L Chacón,et al. Scalable parallel implicit solvers for 3D magnetohydrodynamics , 2008 .
[22] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[23] R. Bhatia. Matrix Analysis , 1996 .
[24] S. Serra Capizzano,et al. Some theorems on linear positive operators and functionals and their applications , 2000 .
[25] Mark S. Shephard,et al. The M3D-C1 approach to simulating 3D 2-fluid magnetohydrodynamics in magnetic fusion experiments , 2008 .
[26] E. E. Tyrtyshnikov. A unifying approach to some old and new theorems on distribution and clustering , 1996 .
[27] Giles Auchmuty,et al. ²-well-posedness of 3d div-curl boundary value problems , 2005 .
[28] Stefano Serra-Capizzano,et al. The GLT class as a generalized Fourier analysis and applications , 2006 .
[29] Stefano Serra Capizzano,et al. V-cycle Optimal Convergence for Certain (Multilevel) Structured Linear Systems , 2004, SIAM J. Matrix Anal. Appl..
[30] Paolo Tilli,et al. A note on the spectral distribution of toeplitz matrices , 1998 .
[31] J. Alexander. L-WELL-POSEDNESS OF 3D DIV-CURL BOUNDARY VALUE PROBLEMS , 2004 .
[32] Carlo Garoni,et al. The theory of block generalized locally Toeplitz sequences , 2018 .
[33] Giancarlo Sangalli,et al. Isogeometric Preconditioners Based on Fast Solvers for the Sylvester Equation , 2016, SIAM J. Sci. Comput..
[34] Paul T. Lin,et al. Towards a scalable fully-implicit fully-coupled resistive MHD formulation with stabilized FE methods , 2009, J. Comput. Phys..
[35] Carlo Garoni,et al. Generalized locally Toeplitz sequences : Theory and applications , 2017 .
[36] Michael Pernice,et al. Implicit adaptive mesh refinement for 2D reduced resistive magnetohydrodynamics , 2008, J. Comput. Phys..
[37] Maya Neytcheva,et al. Spectral analysis of coupled PDEs and of their Schur complements via Generalized Locally Toeplitz sequences in 2D , 2016 .
[38] Hendrik Speleers,et al. Spectral analysis and spectral symbol of matrices in isogeometric collocation methods , 2015, Math. Comput..
[39] Marco Donatelli,et al. A V-cycle Multigrid for multilevel matrix algebras: proof of optimality , 2007, Numerische Mathematik.
[40] Stefano Serra Capizzano,et al. Spectral analysis and spectral symbol for the 2D curl-curl (stabilized) operator with applications to the related iterative solutions , 2016, Math. Comput..
[41] Pierre Ramet,et al. Non-linear MHD simulations of edge localized modes (ELMs) , 2009 .
[42] Ronald H. W. Hoppe,et al. Finite element methods for Maxwell's equations , 2005, Math. Comput..
[43] Thomas Huckle,et al. Multigrid Preconditioning and Toeplitz Matrices , 2002 .
[44] Carlo Garoni,et al. Generalized Locally Toeplitz Sequences , 2017 .
[45] Hendrik Speleers,et al. Spectral analysis and spectral symbol of matrices in isogeometric Galerkin methods , 2017, Math. Comput..
[46] Hendrik Speleers,et al. Symbol-Based Multigrid Methods for Galerkin B-Spline Isogeometric Analysis , 2017, SIAM J. Numer. Anal..
[47] U. Grenander,et al. Toeplitz Forms And Their Applications , 1958 .
[48] Hendrik Speleers,et al. Lusin theorem, GLT sequences and matrix computations: An application to the spectral analysis of PDE discretization matrices , 2017 .
[49] Eugene E. Tyrtyshnikov,et al. Spectra of multilevel toeplitz matrices: Advanced theory via simple matrix relationships , 1998 .
[50] Douglas N. Arnold,et al. Mixed finite element approximation of the vector Laplacian with Dirichlet boundary conditions , 2011, 1109.3668.
[51] Stefano Serra Capizzano,et al. On the Asymptotic Spectrum of Finite Element Matrix Sequences , 2007, SIAM J. Numer. Anal..