Derivative Polynomials, Euler Polynomials, and Associated Integer Sequences

Let $P_n$ and $Q_n$ be the polynomials obtained by repeated differentiation of the tangent and secant functions respectively. From the exponential generating functions of these polynomials we develop relations among their values, which are then applied to various numerical sequences which occur as values of the $P_n$ and $Q_n$. For example, $P_n(0)$ and $Q_n(0)$ are respectively the $n$th tangent and secant numbers, while $P_n(0)+Q_n(0)$ is the $n$th Andre number. The Andre numbers, along with the numbers $Q_n(1)$ and $P_n(1)-Q_n(1)$, are the Springer numbers of root systems of types $A_n$, $B_n$, and $D_n$ respectively, or alternatively (following V. I. Arnol'd) count the number of "snakes" of these types. We prove this for the latter two cases using combinatorial arguments. We relate the values of $P_n$ and $Q_n$ at $\sqrt3$ to certain "generalized Euler and class numbers" of D. Shanks, which have a combinatorial interpretation in terms of 3-signed permutations as defined by R. Ehrenborg and M. A. Readdy. Finally, we express the values of Euler polynomials at any rational argument in terms of $P_n$ and $Q_n$, and from this deduce formulas for Springer and Shanks numbers in terms of Euler polynomials.

[1]  J. W. L. Glaisher On a Set of Coefficients analogous to the Eulerian Numbers , 1899 .

[2]  P. M. Cohn GROUPES ET ALGÉBRES DE LIE , 1977 .

[3]  Jacek Klinowski,et al.  New formulae for the Bernoulli and Euler polynomials at rational arguments , 1995 .

[4]  Richard Ehrenborg,et al.  Sheffer posets and r-signed permutations , 1995 .

[5]  M. Purtill André permutations, lexicographic shellability and the cd-index of a convex polytope , 1993 .

[6]  N. J. A. Sloane,et al.  A New Operation on Sequences: The Boustrophedon Transform , 1996, J. Comb. Theory, Ser. A.

[7]  Donald E. Knuth,et al.  Computation of Tangent, Euler, and Bernoulli Numbers* , 1967 .

[8]  Kai Wang,et al.  Exponential sums of Lerch’s zeta functions , 1985 .

[9]  Mike D. Atkinson,et al.  How to Compute the Series Expansions of Sec X and Tan X , 1986 .

[10]  D. Dumont Further Triangles of Seidel-Arnold Type and Continued Fractions Related to Euler and Springer Numbers , 1995 .

[11]  Désiré André,et al.  Sur les permutations alternées , 1881 .

[12]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[13]  R. W. Carter,et al.  ‘GROUPES ET ALGEBRES DE LIE’ CHAPTERS 2, 3 , 1974 .

[14]  Daniel Shanks,et al.  Generalized Euler and class numbers , 1967 .

[15]  Vladimir I. Arnold,et al.  The calculus of snakes and the combinatorics of Bernoulli, Euler and Springer numbers of Coxeter groups , 1992 .

[16]  Michael E. Hoffman Derivative polynomials for tangent and secant , 1995 .

[17]  Daniel Shanks,et al.  The calculation of certain Dirichlet series , 1963 .