Advances in spinel Li4Ti5O12 anode materials for lithium-ion batteries

Anode materials of rechargeable lithium-ion batteries have been developed towards the aim of high power density, long cycle life, and environmental benignity. As a promising anode material for high power density batteries for large scale applications in both electric vehicle and large stationary power supplies, the spinel Li4Ti5O12 anode has become more attractive for alternative anodes for its relatively high theoretical capacity (175 mA h g−1), stable voltage plateau of 1.5 V vs. Li/Li+, better cycling performance, high safety, easy fabrication, and low cost precursors. This perspective first introduces recent studies on the electronic structure and performance, synthesis methods, and strategies for improvement including carbon-coating, ion-doping, surface modifications, nano-structuring and optimization of the particle morphology of the Li4Ti5O12 anode. Furthermore, practical applications of the commercial spinel lithium-ion batteries are demonstrated. Finally, the future research directions and key developments of the spinel Li4Ti5O12 anode are pointed out from a scientific and an industrial point of view. In addition, the prospect of the synthesis of graphene–Li4Ti5O12 hybrid composite anode materials for next-generation lithium-ion batteries is highlighted.

[1]  G. Cui,et al.  Electrostatic assembly of mesoporous Li4Ti5O12/graphene hybrid as high-rate anode materials , 2013 .

[2]  Jiayan Luo,et al.  General synthesis of carbon-coated nanostructure Li4Ti5O12 as a high rate electrode material for Li-ion intercalation , 2010 .

[3]  Q. Lai,et al.  Synthesis by citric acid sol–gel method and electrochemical properties of Li4Ti5O12 anode material for lithium-ion battery , 2005 .

[4]  L. Kavan,et al.  Phase-pure nanocrystalline Li4Ti5O12 for a lithium-ion battery , 2003 .

[5]  Xiaogang Zhang,et al.  Preparation and characterization of nanocrystalline Li4Ti5O12 by sol–gel method , 2003 .

[6]  Guang Yang,et al.  Li 4–x Mg x Ti 5 O 12 (0.05≤x≤0.2) Anode Material with Improved Rate and Electrochemical Performance for Li-Ion Batteries , 2011 .

[7]  Inyoung Kim,et al.  Solvothermal-Assisted Hybridization between Reduced Graphene Oxide and Lithium Metal Oxides: A Facile Route to Graphene-Based Composite Materials , 2012 .

[8]  Chunsheng Wang,et al.  Kinetic characteristics of mixed conductive electrodes for lithium ion batteries , 2007 .

[9]  Hailei Zhao,et al.  Structural and electrochemical characteristics of Li4−xAlxTi5O12 as anode material for lithium-ion batteries , 2008 .

[10]  C. Hsieh,et al.  Influence of Li addition on charge/discharge behavior of spinel lithium titanate , 2010 .

[11]  J. Duh,et al.  Electrochemical performance and low discharge cut-off voltage behavior of ruthenium doped Li4Ti5O12 with improved energy density , 2012 .

[12]  Zhong Li,et al.  Niobium doped lithium titanate as a high rate anode material for Li-ion batteries , 2010 .

[13]  Bo Li,et al.  Preparation and electrochemical properties of Ca-doped Li4Ti5O12 as anode materials in lithium-ion battery , 2013 .

[14]  Vincent Gariépy,et al.  An improved high-power battery with increased thermal operating range: C–LiFePO4//C–Li4Ti5O12 , 2012 .

[15]  Bibin John,et al.  Lithium titanate as anode material for lithium-ion cells: a review , 2014, Ionics.

[16]  Zhenguo Yang,et al.  Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review , 2009 .

[17]  S. Dou,et al.  Rapid Synthesis of Li4Ti5O12 Microspheres as Anode Materials and Its Binder Effect for Lithium-Ion Battery , 2011 .

[18]  Z. Wen,et al.  Preparation and cycling performance of Al3+ and F- co-substituted compounds Li4AlxTi5-xFyO12-y , 2005 .

[19]  B. Scrosati,et al.  Compatibility of the Py24TFSI–LiTFSI ionic liquid solution with Li4Ti5O12 and LiFePO4 lithium ion battery electrodes , 2009 .

[20]  Doron Aurbach,et al.  LiMn0.8Fe0.2PO4/Li4Ti5O12, a Possible Li-Ion Battery System for Load-Leveling Application , 2013 .

[21]  M. Wagemaker,et al.  Size effects in the Li(4+x)Ti(5)O(12) spinel. , 2009, Journal of the American Chemical Society.

[22]  Tse-Chuan Chou,et al.  Electrochemical properties of nano-sized Li4Ti5O12 powders synthesized by a sol–gel process and characterized by X-ray absorption spectroscopy , 2005 .

[23]  Takeshi Abe,et al.  Electrochemical Insertion and Extraction of Lithium Ion at Uniform Nanosized Li4/3Ti5/3O4 Particles Prepared by a Spray Pyrolysis Method , 2005 .

[24]  J. Tarascon,et al.  Solution-Combustion Synthesized Nanocrystalline Li4Ti5O12 As High-Rate Performance Li-Ion Battery Anode , 2010 .

[25]  Deyu Li,et al.  Study on the Theoretical Capacity of Spinel Lithium Titanate Induced by Low-Potential Intercalation , 2009 .

[26]  Zhimin Liu,et al.  Facile preparation of nanocrystalline Li4Ti5O12 and its high electrochemical performance as anode material for lithium-ion batteries , 2011 .

[27]  J. Dahn,et al.  The Impact of Electrolyte Oxidation Products in LiNi0.5Mn1.5O4/Li4Ti5O12 Cells , 2013 .

[28]  Wei-li Song,et al.  A strategy for scalable synthesis of Li4Ti5O12/reduced graphene oxide toward high rate lithium-ion batteries , 2014 .

[29]  Wei Lv,et al.  Gassing in Li4Ti5O12-based batteries and its remedy , 2012, Scientific Reports.

[30]  Y. Kang,et al.  Effects of types of drying control chemical additives on the morphologies and electrochemical properties of Li4Ti5O12 anode powders prepared by spray pyrolysis , 2010 .

[31]  Jae-won Lee,et al.  Spinel Li4Ti5O12 Nanotubes for Energy Storage Materials , 2009 .

[32]  M. Wohlfahrt‐Mehrens,et al.  A Safe, Low-Cost, and Sustainable Lithium-Ion Polymer Battery , 2004 .

[33]  Qiang Wu,et al.  Electrochemical properties of Li4Ti5−2xNixMnxO12 compounds synthesized by sol–gel process , 2011 .

[34]  Xing Li,et al.  Structural and electrochemical performances of Li4Ti5−xZrxO12 as anode material for lithium-ion batteries , 2009 .

[35]  Changyin Jiang,et al.  Preparation and characterization of spherical La-doped Li4Ti5O12 anode material for lithium ion batteries , 2009 .

[36]  B. Iversen,et al.  Rapid Green Continuous Flow Supercritical Synthesis of High Performance Li4Ti5O12 Nanocrystals for Li Ion Battery Applications , 2011 .

[37]  Q. Lai,et al.  Influence of various complex agents on electrochemical property of Li4Ti5O12 anode material , 2007 .

[38]  Tsutomu Ohzuku,et al.  Zero‐Strain Insertion Material of Li [ Li1 / 3Ti5 / 3 ] O 4 for Rechargeable Lithium Cells , 1995 .

[39]  X. Yao,et al.  Spinel Li4Ti5O12 as a reversible anode material down to 0 V , 2008 .

[40]  ZhengHua Deng,et al.  A high rate, high capacity and long life (LiMn2O4 + AC)/Li4Ti5O12 hybrid battery–supercapacitor , 2009 .

[41]  B. Antić,et al.  Cation ordering and order–disorder phase transitionin Co‐substituted Li4Ti5O12 spinels , 2003 .

[42]  Tingfeng Yi,et al.  Recent development and application of Li4Ti5O12 as anode material of lithium ion battery , 2010 .

[43]  Wei Wang,et al.  Ru-doped Li4Ti5O12 anode materials for high rate lithium-ion batteries , 2013 .

[44]  H. Hayakawa,et al.  A single-crystal study of the electrochemically Li-ion intercalated spinel-type Li4Ti5O12 , 2009 .

[45]  Gary L. Messing,et al.  Ceramic Powder Synthesis by Spray Pyrolysis , 1993 .

[46]  Mingdeng Wei,et al.  ULTRATHIN Li4Ti5O12 NANOSHEETS AS A HIGH PERFORMANCE ANODE FOR Li-ION BATTERY , 2011 .

[47]  Jing-ying Xie,et al.  Synthesis and electrochemical properties of Li4Ti5O12/C composite by the PVB rheological phase method , 2008 .

[48]  V. Contini,et al.  Li4Ti5O12 as anode in all-solid-state, plastic, lithium-ion batteries for low-power applications , 2001 .

[49]  Tingfeng Yi,et al.  High-performance Li4Ti5−xVxO12 (0 ≤ x ≤ 0.3) as an anode material for secondary lithium-ion battery , 2009 .

[50]  Yongyao Xia,et al.  Ti-based compounds as anode materials for Li-ion batteries , 2012 .

[51]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[52]  Zongping Shao,et al.  Combustion synthesis of high-performance Li4Ti5O12 for secondary Li-ion battery , 2009 .

[53]  Jie Gao,et al.  Preparation and characteristic of carbon-coated Li4Ti5O12 anode material , 2007 .

[54]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[55]  Zhihui Xu,et al.  Synthesis by TEA sol–gel method and electrochemical properties of Li4Ti5O12 anode material for lithium-ion battery , 2005 .

[56]  Changyin Jiang,et al.  High-density spherical Li4Ti5O12/C anode material with good rate capability for lithium ion batteries , 2007 .

[57]  D. Aurbach,et al.  Li4Ti5O12/LiMnPO4 Lithium-Ion Battery Systems for Load Leveling Application , 2011 .

[58]  Neeraj Sharma,et al.  Br‐Doped Li4Ti5O12 and Composite TiO2 Anodes for Li‐ion Batteries: Synchrotron X‐Ray and in situ Neutron Diffraction Studies , 2011 .

[59]  J. Cabana,et al.  Effective wrapping of graphene on individual Li4Ti5O12 grains for high-rate Li-ion batteries , 2014 .

[60]  Zhongdong Peng,et al.  Preparation and effects of W-doping on electrochemical properties of spinel Li4Ti5O12 as anode material for lithium ion battery , 2013 .

[61]  Chusheng Chen,et al.  Nonflammable electrolyte for 3-V lithium-ion battery with spinel materials LiNi0.5Mn1.5O4 and Li4Ti5O12 , 2008 .

[62]  J. Duh,et al.  Facile synthesis of mesoporous lithium titanate spheres for high rate lithium-ion batteries , 2011 .

[63]  Martin Winter,et al.  Electrochemical lithiation of tin and tin-based intermetallics and composites , 1999 .

[64]  Xing Li,et al.  Preparation and electrochemical performance of Li4Ti5O12/carbon/carbon nano-tubes for lithium ion battery , 2010 .

[65]  Zongping Shao,et al.  Influence of high-energy ball milling of precursor on the morphology and electrochemical performance of Li4Ti5O12–ball-milling time , 2008 .

[66]  J. Ryu,et al.  Effects of the starting materials and mechanochemical activation on the properties of solid-state reacted Li4Ti5O12 for lithium ion batteries , 2012 .

[67]  Q. Lai,et al.  A new composite material Li4Ti5O12–SnO2 for lithium-ion batteries , 2008 .

[68]  Zaiping Guo,et al.  Preparation and characterization of novel spinel Li4Ti5O12−xBrx anode materials , 2009 .

[69]  Hongsen Li,et al.  PEDOT coated Li4Ti5O12 nanorods: Soft chemistry approach synthesis and their lithium storage properties , 2014 .

[70]  Hailei Zhao,et al.  Solvothermal synthesis and electrochemical characterization of amorphous lithium titanate materials , 2008 .

[71]  M. Perrier,et al.  Nano electronically conductive titanium-spinel as lithium ion storage negative electrode , 2004 .

[72]  Jin‐Wook Shin,et al.  Effects of TiO2 Starting Materials on the Solid-State Formation of Li4Ti5O12 , 2012 .

[73]  Qiuju Wu,et al.  High rate cycling performance of lanthanum-modified Li4Ti5O12 anode materials for lithium-ion batteries , 2012 .

[74]  K. Yubuta,et al.  Growth of Well-Developed Li4Ti5O12 Crystals by the Cooling of a Sodium Chloride Flux , 2011 .

[75]  Xing Li,et al.  Preparation and electrochemical performance of Li4Ti5O12/graphitized carbon nanotubes composite , 2010 .

[76]  S. Hirano,et al.  Synthesis of hierarchical mesoporous nest-like Li4Ti5O12 for high-rate lithium ion batteries , 2012 .

[77]  She-huang Wu,et al.  Sol–gel synthesis of aluminum doped lithium titanate anode material for lithium ion batteries , 2013 .

[78]  G. Lei,et al.  Synthesis of Li4Ti5O12 fibers as a high-rate electrode material for lithium-ion batteries , 2012, Journal of Solid State Electrochemistry.

[79]  J. Xu,et al.  Synthesis and electrochemical performances of Li4Ti4.95Al0.05O12/C as anode material for lithium-ion batteries , 2011 .

[80]  C. Lee,et al.  Molten salt synthesis and characterization of Li4Ti5−xMnxO12 (x = 0.0, 0.05 and 0.1) as anodes for Li-ion batteries , 2012 .

[81]  Hui Yang,et al.  Characterization and electrochemical properties of carbon-coated Li4Ti5O12 prepared by a citric acid sol-gel method , 2011 .

[82]  Zhongdong Peng,et al.  Preparation and effects of W-doping on electrochemical properties of spinel Li4Ti5O12 as anode material for lithium ion battery , 2010, Journal of Central South University.

[83]  Yong‐Sheng Hu,et al.  Porous Li4Ti5O12 Coated with N‐Doped Carbon from Ionic Liquids for Li‐Ion Batteries , 2011, Advanced materials.

[84]  Seok-Gwang Doo,et al.  Nitridation-driven conductive Li4Ti5O12 for lithium ion batteries. , 2008, Journal of the American Chemical Society.

[85]  Q. Lai,et al.  Effects of dopant on the electrochemical properties of Li4Ti5O12 anode materials , 2007 .

[86]  Hongsen Li,et al.  Carbon coated Li4Ti5O12 nanorods as superior anode material for high rate lithium ion batteries , 2013 .

[87]  Junjie Huang,et al.  Preparation and electrochemical performance of monodisperse Li4Ti5O12 hollow spheres , 2010 .

[88]  P. Novák,et al.  Electrochemically active flame-made nanosized spinels: LiMn2O4, Li4Ti5O12 and LiFe5O8 , 2007 .

[89]  K. Ramesha,et al.  CTAB-assisted sol–gel synthesis of Li4Ti5O12 and its performance as anode material for Li-ion batteries , 2011 .

[90]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[91]  X. Lou,et al.  Mesoporous Li4Ti5O12 Hollow Spheres with Enhanced Lithium Storage Capability , 2013, Advanced materials.

[92]  R. Basu,et al.  Synthesis of nanocrystalline Li4Ti5O12 by a novel aqueous combustion technique , 2009 .

[93]  Yong‐Mook Kang,et al.  Tailored Li4Ti5O12 nanofibers with outstanding kinetics for lithium rechargeable batteries. , 2012, Nanoscale.

[94]  Hongda Du,et al.  Structure and Electrochemical Properties of Zn-Doped Li4Ti5O12 as Anode Materials in Li-Ion Battery , 2010 .

[95]  Zongping Shao,et al.  Synthesis of lithium insertion material Li4Ti5O12 from rutile TiO2 via surface activation , 2010 .

[96]  P. Lippens,et al.  Phase transition in the spinel Li4Ti5O12 induced by lithium insertion - Influence of the substitutions Ti/V, Ti/Mn, Ti/Fe , 2003 .

[97]  J. Dahn,et al.  Studies of LiNi0.5Mn1.5O4 as a Positive Electrode for Li-Ion Batteries: M3+ Doping (M = Al, Fe, Co and Cr), Electrolyte Salts and LiNi0.5Mn1.5O4/Li4Ti5O12 Cells , 2013 .

[98]  K. Kanamura,et al.  Li+ ion diffusion in Li4Ti5O12 thin film electrode prepared by PVP sol–gel method , 2004 .

[99]  Deyu Li,et al.  Electrochemical characteristics of spinel Li4Ti5O12 discharged to 0.01 V , 2008 .

[100]  Yueping Fang,et al.  Synthesis and electrochemical performance of nanoporous Li4Ti5O12 anode material for lithium-ion batteries , 2012, Journal of Solid State Electrochemistry.

[101]  Xiaogang Zhang,et al.  Facile synthesis of hierarchically porous Li4Ti5O12 microspheres for high rate lithium ion batteries , 2010 .

[102]  K. Poeppelmeier,et al.  Three-Dimensionally Ordered Macroporous Li4Ti5O12: Effect of Wall Structure on Electrochemical Properties , 2006 .

[103]  Jincheng Liu,et al.  Sol–gel preparation and electrochemical properties of La-doped Li4Ti5O12 anode material for lithium-ion battery , 2013, Journal of Solid State Electrochemistry.

[104]  Jong Pil Park,et al.  Preparation of Li4Ti5O12 nanoparticles by a simple sonochemical method , 2007 .

[105]  A. Jaiswal,et al.  Nanoscale LiFePO4 and Li4Ti5O12 for High Rate Li-ion Batteries , 2009 .

[106]  K. R. Murali,et al.  Electrochemical properties of doped lithium titanate compounds and their performance in lithium rechargeable batteries , 2008 .

[107]  Alexander S. Mukasyan,et al.  Combustion synthesis and nanomaterials , 2008 .

[108]  Zaiping Guo,et al.  Preparation and characterization of spinel Li4Ti5O12 nanoparticles anode materials for lithium ion battery , 2012, Journal of Nanoparticle Research.

[109]  Hun‐Gi Jung,et al.  Micron-sized, carbon-coated Li 4Ti 5O 12 as high power anode material for advanced lithium batteries , 2011 .

[110]  Haoshen Zhou,et al.  Enhancing the performances of Li-ion batteries by carbon-coating: present and future. , 2012, Chemical communications.

[111]  H. Fang,et al.  Ball milling-assisted sol–gel route to Li4Ti5O12 and its electrochemical properties , 2009 .

[112]  Z. Wen,et al.  The high-rate performance of the newly designed Li4Ti5O12/Cu composite anode for lithium ion batteries , 2008 .

[113]  Hui Yang,et al.  Microwave solid-state synthesis of spinel Li4Ti5O12 nanocrystallites as anode material for lithium-ion batteries , 2007 .

[114]  Yang-Kook Sun,et al.  Development of LiNi0.5Mn1.5O4 / Li4Ti5O12 System with Long Cycle Life , 2009 .

[115]  Tingfeng Yi,et al.  Enhanced cycling stability of microsized LiCoO2 cathode by Li4Ti5O12 coating for lithium ion battery , 2010 .

[116]  Jian Gao,et al.  Preparation and characterization of high-density spherical Li4Ti5O12 anode material for lithium secondary batteries , 2006 .

[117]  Lijun Gao,et al.  Li4Ti5O12/C composite electrode material synthesized involving conductive carbon precursor for Li-ion battery , 2009 .

[118]  Li Yang,et al.  Li4Ti5O12 hollow microspheres assembled by nanosheets as an anode material for high-rate lithium ion batteries , 2009 .

[119]  M. Yoshio,et al.  Lithium-ion batteries , 2009 .

[120]  J. Pereira‐Ramos,et al.  Electrochemical properties of sol–gel Li4/3Ti5/3O4 , 1999 .

[121]  M. Inagaki Carbon coating for enhancing the functionalities of materials , 2012 .

[122]  Yue Ma,et al.  Carbon-encapsulated F-doped Li4Ti5O12 as a high rate anode material for Li+ batteries. , 2013, ACS nano.

[123]  Feixiang Wu,et al.  Synthesis and characterization of Li4Ti5O12/graphene composite as anode material with enhanced electrochemical performance , 2013, Ionics.

[124]  L. Wen,et al.  Synthesis and electrochemical properties of Li4Ti5O12 , 2011 .

[125]  S. Pejovnik,et al.  Impact of the Carbon Coating Thickness on the Electrochemical Performance of LiFePO4 / C Composites , 2005 .

[126]  J. Jumas,et al.  Chemical and Electrochemical Li-Insertion into the Li4Ti5O12 Spinel , 2004 .

[127]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.

[128]  K. P. Abhilash,et al.  Investigations on pure and Ag doped lithium lanthanum titanate (LLTO) nanocrystalline ceramic electrolytes for rechargeable lithium-ion batteries , 2013 .

[129]  Jaephil Cho,et al.  Spinel Li4Ti5O12 Nanowires for High-Rate Li-Ion Intercalation Electrode , 2007 .

[130]  T. Ohzuku,et al.  Three-volt lithium-ion battery with Li[Ni1/2Mn3/2]O4 and the zero-strain insertion material of Li[Li1/3Ti5/3]O4 , 2003 .

[131]  Ping He,et al.  Nano active materials for lithium-ion batteries. , 2010, Nanoscale.

[132]  C. Lai,et al.  Improvement of the high rate capability of hierarchical structured Li4Ti5O12 induced by the pseudocapacitive effect , 2010 .

[133]  K. Yin,et al.  Facile synthesis of N-doped carbon-coated Li4Ti5O12 microspheres using polydopamine as a carbon source for high rate lithium ion batteries , 2013 .

[134]  Xuelin Yang,et al.  Research on Li4Ti5O12 ∕ Cu x O Composite Anode Materials for Lithium-Ion Batteries , 2005 .

[135]  Michael M. Thackeray,et al.  Spinel Anodes for Lithium‐Ion Batteries , 1994 .

[136]  Z. Zhong Synthesis of Mo4 + Substituted Spinel Li4Ti5 − x Mo x O12 , 2007 .

[137]  Y. Kang,et al.  Characteristics of spherical-shaped Li4Ti5O12 anode powders prepared by spray pyrolysis , 2009 .

[138]  J. Gim,et al.  Enhanced High-Rate Performance of Li4Ti5O12 Nanoparticles for Rechargeable Li-Ion Batteries , 2011 .

[139]  Li Yang,et al.  Preparation and electrochemical lithium storage of flower-like spinel Li4Ti5O12 consisting of nanosheets , 2008 .

[140]  A. Mukasyan,et al.  Novel approaches to solution-combustion synthesis of nanomaterials , 2007 .

[141]  A. Arof,et al.  Synthesis and characterization of Li4Ti5O12 , 2009 .

[142]  D. H. Bradhurst,et al.  Spinel Li[Li1/3Ti5/3]O4 as an anode material for lithium ion batteries , 1999 .

[143]  Karim Zaghib,et al.  Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries , 1999 .

[144]  H. Ming,et al.  Hierarchical Li4Ti5O12 particles co-modified with C&N towards enhanced performance in lithium-ion battery applications , 2014 .

[145]  Xiaogang Zhang,et al.  In situ synthesis of high-loading Li4Ti5O12-graphene hybrid nanostructures for high rate lithium ion batteries. , 2011, Nanoscale.

[146]  C. Ionica-Bousquet,et al.  Polyfluorinated boron cluster-based salts: A new electrolyte for application in Li4Ti5O12/LiMn2O4 rechargeable lithium-ion batteries , 2010 .

[147]  Lin Gu,et al.  Lithium Storage in Li4Ti5O12 Spinel: The Full Static Picture from Electron Microscopy , 2012, Advanced materials.

[148]  ZhengHua Deng,et al.  One-step synthesis of Li4Ti5O12/C anode material with high performance for lithium-ion batteries , 2010 .

[149]  Yarong Wang,et al.  Synthesis and electrochemical performance of nano-sized Li4Ti5O12 with double surface modification of Ti(III) and carbon , 2009 .

[150]  Yan Yu,et al.  Solid-state synthesis and electrochemical performance of Li4Ti5O12/graphene composite for lithium-ion batteries , 2013 .

[151]  Yun Wang,et al.  Li4Ti5O12/graphene nanostructure for lithium storage with high-rate performance , 2013 .

[152]  Ilias Belharouak,et al.  Electrochemistry and safety of Li4Ti5O12 and graphite anodes paired with LiMn2O4 for hybrid electric vehicle Li-ion battery applications , 2011 .

[153]  Aurelien Du Pasquier,et al.  Nano Li4Ti5O12–LiMn2O4 batteries with high power capability and improved cycle-life , 2009 .

[154]  Xiaogang Zhang,et al.  In situ growth of Li4Ti5O12 on multi-walled carbon nanotubes: novel coaxial nanocables for high rate lithium ion batteries , 2011 .

[155]  Changyin Jiang,et al.  Synthesis and Characterization of Spherical La-Doped Nanocrystalline Li4Ti5O12 / C Compound for Lithium-Ion Batteries , 2010 .

[156]  Feiyu Kang,et al.  Facile synthesis of Li4Ti5O12/C composite with super rate performance , 2012 .

[157]  J. Wolfenstine,et al.  Electrical conductivity and charge compensation in Ta doped Li4Ti5O12 , 2008 .

[158]  A. Jalbout,et al.  LiFePO4 as an optimum power cell material , 2009 .

[159]  Mianqi Xue,et al.  Graphene as a conductive additive to enhance the high-rate capabilities of electrospun Li4Ti5O12 for lithium-ion batteries , 2010 .

[160]  Chen Gong,et al.  Yttrium-modified Li4Ti5O12 as an effective anode material for lithium ion batteries with outstanding long-term cyclability and rate capabilities , 2013 .

[161]  R. Samigullina,et al.  Structure, ionic conduction, and phase transformations in lithium titanate Li4Ti5O12 , 2003 .

[162]  Yongyao Xia,et al.  A Comprehensive Study of Effects of Carbon Coating on Li4Ti5O12 Anode Material for Lithium-Ion Batteries , 2011 .

[163]  Rongshun Wang,et al.  High rate capability and long-term cyclability of Li4Ti4.9V0.1O12 as anode material in lithium ion battery , 2011 .

[164]  Chuan Wu,et al.  Influence of composite LiCl–KCl molten salt on microstructure and electrochemical performance of spinel Li4Ti5O12 , 2008 .

[165]  Yongyao Xia,et al.  Carbon-Coated Li4Ti5O12 as a High Rate Electrode Material for Li-Ion Intercalation , 2007 .

[166]  Zongping Shao,et al.  Cellulose-assisted combustion synthesis of Li4Ti5O12 adopting anatase TiO2 solid as raw material with high electrochemical performance , 2009 .

[167]  Ju-Wan Kim,et al.  Polyol-mediated synthesis of Li4Ti5O12 nanoparticle and its electrochemical properties , 2005 .

[168]  S. Takai Diffusion coefficient measurement of lithium ion in sintered Li1.33Ti1.67O4 by means of neutron radiography , 1999 .

[169]  B. Chowdari,et al.  Metal oxides and oxysalts as anode materials for Li ion batteries. , 2013, Chemical reviews.

[170]  Jong‐Min Lee,et al.  Novel synthesis of high performance anode materials for lithium-ion batteries (LIBs) , 2014 .

[171]  Ilias Belharouak,et al.  Thermal properties of Li4/3Ti5/3O4/LiMn2O4 cell , 2007 .

[172]  Heon-Cheol Shin,et al.  Lithium transport through Li1+δ[Ti2−yLiy]O4 (y=0; 1/3) electrodes by analysing current transients upon large potential steps , 1999 .

[173]  Yang-Kook Sun,et al.  Nanostructured Anode Material for High‐Power Battery System in Electric Vehicles , 2010, Advanced materials.

[174]  R. Li,et al.  Microwave-assisted hydrothermal synthesis of nanostructured spinel Li4Ti5O12 as anode materials for lithium ion batteries , 2012 .

[175]  P. Heitjans,et al.  Ultraslow Li diffusion in spinel-type structured Li4Ti5O12 - a comparison of results from solid state NMR and impedance spectroscopy. , 2007, Physical chemistry chemical physics : PCCP.

[176]  B. Scrosati,et al.  A new type of lithium-ion cell based on the Li4Ti5O12/Li2Co0.4Fe0.4Mn3.2O8 high-voltage, electrode combination , 2000 .

[177]  Minsheng Lei,et al.  Ab initio studies of structural and electronic properties of Li4Ti5O12 spinel , 2007 .

[178]  S T Aruna,et al.  COMBUSTION SYNTHESIS: AN UPDATE , 2002 .

[179]  Jun Chen,et al.  Investigation of effects of carbon coating on the electrochemical performance of Li4Ti5O12/C nanocomposites , 2013 .

[180]  Zongping Shao,et al.  Preparation and re‐examination of Li4Ti4.85Al0.15O12 as anode material of lithium‐ion battery , 2011 .

[181]  Z. Wen,et al.  Effects of dopant on the electrochemical performance of Li4Ti5O12 as electrode material for lithium ion batteries , 2007 .

[182]  Xin Guo,et al.  Morphologies and structures of carbon coated on Li4Ti5O12 and their effects on lithium storage performance , 2014 .

[183]  Zongping Shao,et al.  A novel method to enhance rate performance of an Al-doped Li4Ti5O12 electrode by post-synthesis treatment in liquid formaldehyde at room temperature , 2012 .

[184]  B. Scrosati,et al.  Structural and electrochemical study on Li(Li1/3Ti5/3)O4 anode material for lithium ion batteries , 2000 .

[185]  Z. Wen,et al.  High rate electrode materials for lithium ion batteries , 2008 .

[186]  Haoshen Zhou,et al.  Effect of particle dispersion on high rate performance of nano-sized Li4Ti5O12 anode , 2007 .

[187]  Yusaku Isobe,et al.  High-rate nano-crystalline Li4Ti5O12 attached on carbon nano-fibers for hybrid supercapacitors , 2010 .

[188]  D. Jung,et al.  Design of particles by spray pyrolysis and recent progress in its application , 2010 .

[189]  Biao Zhang,et al.  Improved rate capability of carbon coated Li 3.9Sn 0.1Ti 5O 12 porous electrodes for Li-ion batterie , 2011 .

[190]  Li Yang,et al.  Template-free synthesis of mesoporous spinel lithium titanate microspheres and their application in high-rate lithium ion batteries , 2009 .

[191]  K. Amine,et al.  Electrochemical performance of Li4/3Ti5/3O4/Li1+x(Ni1/3Co1/3Mn1/3)1−xO2 cell for high power applications , 2007 .

[192]  Haihui Wang,et al.  Effect of Nb-doping on electrochemical stability of Li4Ti5O12 discharged to 0 V , 2011, Journal of Solid State Electrochemistry.

[193]  K. Amine,et al.  Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries , 2011 .

[194]  Hong-li Wang,et al.  Synthesis and characterization of spinel Li4Ti5O12 anode material by oxalic acid-assisted sol–gel method , 2006 .

[195]  Shaohua Fang,et al.  Synthesis of sawtooth-like Li4Ti5O12 nanosheets as anode materials for Li-ion batteries , 2010 .

[196]  K. Amine,et al.  Electrochemical and Thermal Investigation of Li4 ∕ 3Ti5 ∕ 3O4 Spinel , 2007 .

[197]  U. Pal,et al.  Effects of crystallization and dopant concentration on the emission behavior of TiO2:Eu nanophosphors , 2012, Nanoscale Research Letters.

[198]  Keli Zhang,et al.  Synthesis of spinel Li4Ti5O12 anode material by a modified rheological phase reaction , 2009 .

[199]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[200]  Glenn G. Amatucci,et al.  A new solid-state process for synthesis of LiMn1.5Ni0.5O4−δ spinel , 2010 .

[201]  Liquan Chen,et al.  Theoretical study of cation doping effect on the electronic conductivity of Li4Ti5O12 , 2006 .

[202]  Y. Kang,et al.  Effects of preparation conditions on the electrochemical and morphological characteristics of Li4Ti5O12 powders prepared by spray pyrolysis , 2009 .

[203]  Petr Novák,et al.  In situ neutron diffraction study of Li insertion in Li4Ti5O12 , 2010 .

[204]  K. Zaghib,et al.  Safe and fast-charging Li-ion battery with long shelf life for power applications , 2011 .

[205]  Ilias Belharouak,et al.  Performance Degradation and Gassing of Li4Ti5O12/LiMn2O4 Lithium-Ion Cells , 2012 .

[206]  Jianwen Yang,et al.  Preparation and characterization of LiTi2O4 anode material synthesized by one-step solid-state reaction , 2010 .

[207]  Chen Gong,et al.  Excellent long-term cycling stability of La-doped Li4Ti5O12 anode material at high current rates , 2012 .

[208]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[209]  N. Takami,et al.  Lithium Diffusion in Li4/3Ti5/3O4 Particles during Insertion and Extraction , 2011 .

[210]  H. Tukamoto,et al.  New inorganic spinel oxides for use as negative electrode materials in future lithium-ion batteries , 1999 .

[211]  Miran Gaberšček,et al.  Impact of electrochemical wiring topology on the kinetics of insertion electrodes , 2006 .

[212]  Qingsong Wang,et al.  Comparisons of graphite and spinel Li1.33Ti1.67O4 as anode materials for rechargeable lithium-ion batteries , 2005 .

[213]  Kuang‐Che Hsiao,et al.  Microstructure effect on the electrochemical property of Li4Ti5O12 as an anode material for lithium-ion batteries , 2008 .

[214]  Haihui Wang,et al.  Sol–gel synthesis and electrochemical performance of Li4Ti5O12/graphene composite anode for lithium-ion batteries , 2011 .

[215]  B. Scrosati,et al.  High-Resolution In-Situ Structural Measurements of the Li4/3Ti5/3O4 “Zero-Strain” Insertion Material , 2002 .

[216]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[217]  Ying Shi,et al.  Nanosized Li4Ti5O12/graphene hybrid materials with low polarization for high rate lithium ion batteries , 2011 .

[218]  Paul A. Nelson,et al.  Development of a high-power lithium-ion battery , 1998 .

[219]  M. Willinger,et al.  Surfactant-free nonaqueous synthesis of lithium titanium oxide (LTO) nanostructures for lithium ion battery applications , 2011 .

[220]  P. Mustarelli,et al.  Cations Distribution and Valence States in Mn-Substituted Li4Ti5O12 Structure , 2008 .

[221]  Haoshen Zhou,et al.  Preparation and rate capability of Li4Ti5O12 hollow-sphere anode material , 2007 .

[222]  Werner Weppner,et al.  Evidence of Two‐Phase Formation upon Lithium Insertion into the Li1.33Ti1.67 O 4 Spinel , 1999 .

[223]  J. Shu Electrochemical behavior and stability of Li4Ti5O12 in a broad voltage window , 2009 .

[224]  Tingfeng Yi,et al.  Improving the high rate performance of Li4Ti5O12 through divalent zinc substitution , 2012 .

[225]  D. Fray,et al.  Low temperature nanostructured lithium titanates: controlling the phase composition, crystal structure and surface area , 2010 .

[226]  T. Matsushima,et al.  Preparation of particulate Li4Ti5O12 having excellent characteristics as an electrode active material for power storage cells , 2003 .

[227]  Tingfeng Yi,et al.  Structure and Electrochemical Performance of Niobium-Substituted Spinel Lithium Titanium Oxide Synthesized by Solid-State Method , 2011 .

[228]  Yuefei Zhang,et al.  Structural Analysis and Electrochemical Studies of Carbon Coated Li4Ti5O12 Particles Used as Anode for Lithium-Ion Battery , 2014 .

[229]  Yasuhiro Harada,et al.  Electrochemical Kinetics and Safety of 2-Volt Class Li-Ion Battery System Using Lithium Titanium Oxide Anode , 2009 .

[230]  H. Nakano,et al.  Understanding the Zero-Strain Lithium Insertion Scheme of Li[Li1/3Ti5/3]O4: Structural Changes at Atomic Scale Clarified by Raman Spectroscopy , 2014 .

[231]  Yuanping Cheng,et al.  Enhanced high-rate performance of sub-micro Li4Ti4.95Zn0.05O12 as anode material for lithium-ion batteries , 2013, Ionics.

[232]  Xingchao Wang,et al.  Synthesis and electrochemical properties of spinel Li4Ti5O12−xClx anode materials for lithium-ion batteries , 2012, Journal of Solid State Electrochemistry.

[233]  A. Rai,et al.  Improved electrochemical performance of Li4Ti5O12 with a variable amount of graphene as a conductive agent for rechargeable lithium-ion batteries by solvothermal method , 2012 .

[234]  D. Wexler,et al.  Basic molten salt process-A new route for synthesis of nanocrystalline Li4Ti5O12-TiO2 anode material for Li-ion batteries using eutectic mixture of LiNO3-LiOH-Li2O2 , 2010 .