Targeted Isolation of Antibiotic Brominated Alkaloids from the Marine Sponge Pseudoceratina durissima Using Virtual Screening and Molecular Networking

Many targeted natural product isolation approaches rely on the use of pre-existing bioactivity information to inform the strategy used for the isolation of new bioactive compounds. Bioactivity information can be available either in the form of prior assay data or via Structure Activity Relationship (SAR) information which can indicate a potential chemotype that exhibits a desired bioactivity. The work described herein utilizes a unique method of targeted isolation using structure-based virtual screening to identify potential antibacterial compounds active against MRSA within the marine sponge order Verongiida. This is coupled with molecular networking-guided, targeted isolation to provide a novel drug discovery procedure. A total of 12 previously reported bromotyrosine-derived alkaloids were isolated from the marine sponge species Pseudoceratina durissima, and the compound, (+)-aeroplysinin-1 (1) displayed activity against the MRSA pathogen (MIC: <32 µg/mL). The compounds (1–3, 6 and 9) were assessed for their central nervous system (CNS) interaction and behavioral toxicity to zebrafish (Danio rerio) larvae, whereby several of the compounds were shown to induce significant hyperactivity. Anthelmintic activity against the parasitic nematode Haemonchus contorutus was also evaluated (2–4, 6–8).

[1]  G. Banfi,et al.  Aerophobin-1 from the Marine Sponge Aplysina aerophoba Modulates Osteogenesis in Zebrafish Larvae , 2022, Marine drugs.

[2]  D. Wlodkowic,et al.  Accelerating Chemobehavioral Phenotypic Screening in Neurotoxicology Using a Living Embryo Array System. , 2022, Zebrafish.

[3]  D. Wlodkowic Future prospects of accelerating neuroactive drug discovery with high-throughput behavioral phenotyping , 2022, Expert opinion on drug discovery.

[4]  R. Brkljača,et al.  Application of Networking Approaches to Assess the Chemical Diversity, Biogeography, and Pharmaceutical Potential of Verongiida Natural Products , 2021, Marine drugs.

[5]  M. Maahury,et al.  The Computational Calculation and Molecular Docking of Aeroplysinin-1 As Antibacterial , 2021, Indo. J. Chem. Res.

[6]  Bill C. H. Chang,et al.  High-Throughput Phenotypic Assay to Screen for Anthelmintic Activity on Haemonchus contortus , 2021, Pharmaceuticals.

[7]  G. Ramm,et al.  An Engineered sgsh Mutant Zebrafish Recapitulates Molecular and Behavioural Pathobiology of Sanfilippo Syndrome A/MPS IIIA , 2021, International journal of molecular sciences.

[8]  B. Fuchs,et al.  Thioredoxin Reductase Is a Valid Target for Antimicrobial Therapeutic Development Against Gram-Positive Bacteria , 2021, Frontiers in Microbiology.

[9]  Jae-Seok Kim,et al.  Bacterial Targets of Antibiotics in Methicillin-Resistant Staphylococcus aureus , 2021, Antibiotics.

[10]  I. Mohanty,et al.  Presence of Bromotyrosine Alkaloids in Marine Sponges Is Independent of Metabolomic and Microbiome Architectures , 2021, mSystems.

[11]  E. Hajdu,et al.  Anxiolytic-like effect of brominated compounds from the marine sponge Aplysina fulva on adult zebrafish (Danio rerio): Involvement of the GABAergic system , 2021, Neurochemistry International.

[12]  G. Panda,et al.  Design, synthesis and biological evaluation of oxime lacking Psammaplin inspired chemical libraries as anti-cancer agents , 2021 .

[13]  Jian Wang,et al.  Studying Histone Deacetylase Inhibition and Apoptosis Induction of Psammaplin A Monomers with Modified Thiol Group. , 2021, ACS medicinal chemistry letters.

[14]  Peter B. McGarvey,et al.  UniProt: the universal protein knowledgebase in 2021 , 2020, Nucleic Acids Res..

[15]  Gregory A Landrum,et al.  rdScaffoldNetwork: The Scaffold Network Implementation in RDKit , 2020, J. Chem. Inf. Model..

[16]  Eduardo Habib Bechelane Maia,et al.  Structure-Based Virtual Screening: From Classical to Artificial Intelligence , 2020, Frontiers in Chemistry.

[17]  M. Rateb,et al.  Discovery of Two Brominated Oxindole Alkaloids as Staphylococcal DNA Gyrase and Pyruvate Kinase Inhibitors via Inverse Virtual Screening , 2020, Microorganisms.

[18]  R. Grimalt,et al.  Ozenoxacin, a New Effective and Safe Topical Treatment for Impetigo in Children and Adolescents , 2020, Dermatology.

[19]  Simon Rogers,et al.  Feature-Based Molecular Networking in the GNPS Analysis Environment , 2019, Nature Methods.

[20]  Abimael D Rodríguez,et al.  Marine Pharmacology in 2014–2015: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, Antiviral, and Anthelmintic Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action , 2019, Marine drugs.

[21]  S. Scholz,et al.  Hypo- or hyperactivity of zebrafish embryos provoked by neuroactive substances: a review on how experimental parameters impact the predictability of behavior changes , 2019, Environmental Sciences Europe.

[22]  Steven D. Townsend,et al.  Methicillin-resistant Staphylococcus aureus (MRSA): antibiotic-resistance and the biofilm phenotype. , 2019, MedChemComm.

[23]  Donald Wlodkowic,et al.  Impact of digital video analytics on accuracy of chemobehavioural phenotyping in aquatic toxicology , 2019, PeerJ.

[24]  D. Wlodkowic,et al.  Additives migrating from 3D-printed plastic induce developmental toxicity and neuro-behavioural alterations in early life zebrafish (Danio rerio). , 2019, Aquatic toxicology.

[25]  Pierre Champy,et al.  Natural products targeting strategies involving molecular networking: different manners, one goal. , 2019, Natural product reports.

[26]  Jonathan Bisson,et al.  Taxonomically Informed Scoring Enhances Confidence in Natural Products Annotation , 2019, bioRxiv.

[27]  M. Donia,et al.  Potential of marine natural products against drug-resistant bacterial infections. , 2019, The Lancet. Infectious diseases.

[28]  Fanxing Xu,et al.  Marine-Derived Natural Lead Compound Disulfide-Linked Dimer Psammaplin A: Biological Activity and Structural Modification , 2019, Marine drugs.

[29]  M. Majik,et al.  2D NMR Studies of Bromotyrosine Alkaloid, Purpurealidin K from Marine Sponge Psammaplysilla purpurea , 2019, ChemistrySelect.

[30]  Donald Wlodkowic,et al.  Towards High-Throughput Chemobehavioural Phenomics in Neuropsychiatric Drug Discovery , 2019, Marine drugs.

[31]  A. Mejias,et al.  A decade of antimicrobial resistance in Staphylococcus aureus: A single center experience , 2019, PloS one.

[32]  M. Saki,et al.  A review on mechanism of action, resistance, synergism, and clinical implications of mupirocin against Staphylococcus aureus. , 2019, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[33]  R. Schmitz,et al.  Crystal Structure of the Apo-Form of NADPH-Dependent Thioredoxin Reductase from a Methane-Producing Archaeon , 2018, Antioxidants.

[34]  Torsten Schwede,et al.  SWISS-MODEL: homology modelling of protein structures and complexes , 2018, Nucleic Acids Res..

[35]  D. Lecchini,et al.  Bioactive Bromotyrosine-Derived Alkaloids from the Polynesian Sponge Suberea ianthelliformis , 2018, Marine drugs.

[36]  T. Schwede,et al.  Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology , 2017, Scientific Reports.

[37]  Abimael D Rodríguez,et al.  Marine Pharmacology in 2012–2013: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action † , 2017, Marine drugs.

[38]  David E. Williams,et al.  Cultures of the Marine Bacterium Pseudovibrio denitrificans Ab134 Produce Bromotyrosine-Derived Alkaloids Previously Only Isolated from Marine Sponges. , 2017, Journal of natural products.

[39]  Pieter C Dorrestein,et al.  Molecular Networking As a Drug Discovery, Drug Metabolism, and Precision Medicine Strategy. , 2017, Trends in pharmacological sciences.

[40]  Kelsey S. Kalous,et al.  Docking into Mycobacterium tuberculosis Thioredoxin Reductase Protein Yields Pyrazolone Lead Molecules for Methicillin-Resistant Staphylococcus aureus , 2017, Antibiotics.

[41]  R. Molina,et al.  Conformational Dynamics in Penicillin-Binding Protein 2a of Methicillin-Resistant Staphylococcus aureus, Allosteric Communication Network and Enablement of Catalysis. , 2017, Journal of the American Chemical Society.

[42]  Andrew M. Piggott,et al.  Enantiodivergence in the Biosynthesis of Bromotyrosine Alkaloids from Sponges? , 2017, Journal of natural products.

[43]  K. Ingkaninan,et al.  Bromotyrosine alkaloids with acetylcholinesterase inhibitory activity from the Thai sponge Acanthodendrilla sp. , 2016, Planta Medica.

[44]  Kristian Fog Nielsen,et al.  Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking , 2016, Nature Biotechnology.

[45]  Jongkeun Choi,et al.  Structural Studies on the Extracellular Domain of Sensor Histidine Kinase YycG from Staphylococcus aureus and Its Functional Implications. , 2016, Journal of molecular biology.

[46]  P. Cárdenas Who Produces Ianthelline? The Arctic Sponge Stryphnus fortis or its Sponge Epibiont Hexadella dedritifera: a Probable Case of Sponge-Sponge Contamination , 2016, Journal of Chemical Ecology.

[47]  Jonathan Bisson,et al.  Integration of Molecular Networking and In-Silico MS/MS Fragmentation for Natural Products Dereplication. , 2016, Analytical chemistry.

[48]  E. Baker,et al.  Peptide binding to a bacterial signal peptidase visualized by peptide tethering and carrier-driven crystallization , 2016, IUCrJ.

[49]  M. Medina,et al.  Aeroplysinin-1, a Sponge-Derived Multi-Targeted Bioactive Marine Drug , 2015, Marine drugs.

[50]  Calum A. MacRae,et al.  Zebrafish as tools for drug discovery , 2015, Nature Reviews Drug Discovery.

[51]  S. Wesselborg,et al.  Pleiotropic effects of spongean alkaloids on mechanisms of cell death, cell cycle progression and DNA damage response (DDR) of acute myeloid leukemia (AML) cells. , 2015, Cancer letters.

[52]  M. Cooper,et al.  Helping Chemists Discover New Antibiotics. , 2015, ACS infectious diseases.

[53]  Pasi K. Korhonen,et al.  Low cost whole-organism screening of compounds for anthelmintic activity. , 2015, International journal for parasitology.

[54]  D. Youssef,et al.  Bioactive Secondary Metabolites from the Red Sea Marine Verongid Sponge Suberea Species , 2015, Marine drugs.

[55]  M. Gotsbacher,et al.  New Antimicrobial Bromotyrosine Analogues from the Sponge Pseudoceratina purpurea and Its Predator Tylodina corticalis , 2015, Marine drugs.

[56]  Arthur J Olson,et al.  Small-molecule library screening by docking with PyRx. , 2015, Methods in molecular biology.

[57]  K. Ingkaninan,et al.  Non-Competitive Inhibition of Acetylcholinesterase by Bromotyrosine Alkaloids , 2014, Natural product communications.

[58]  A. Miele,et al.  Thioredoxin Reductase and its Inhibitors , 2014, Current protein & peptide science.

[59]  F. J. Díaz,et al.  Bromotyrosine derivatives from marine sponges inhibit the HIV-1 replication in vitro , 2014, Vitae.

[60]  N. Sharma,et al.  Structures of kibdelomycin bound to Staphylococcus aureus GyrB and ParE showed a novel U-shaped binding mode. , 2014, ACS chemical biology.

[61]  T. Pfeifer,et al.  Aplysinellamides A-C, bromotyrosine-derived metabolites from an Australian Aplysinella sp. marine sponge. , 2014, Journal of natural products.

[62]  J. Bolla,et al.  New Ianthelliformisamine derivatives as antibiotic enhancers against resistant Gram-negative bacteria. , 2014, Journal of medicinal chemistry.

[63]  Anil Kumar Sharma,et al.  Isoxazoline containing natural products as anticancer agents: a review. , 2014, European journal of medicinal chemistry.

[64]  C. Sotriffer,et al.  Rational Design of Broad Spectrum Antibacterial Activity Based on a Clinically Relevant Enoyl-Acyl Carrier Protein (ACP) Reductase Inhibitor* , 2014, The Journal of Biological Chemistry.

[65]  P. Proksch,et al.  An Aeroplysinin-1 Specific Nitrile Hydratase Isolated from the Marine Sponge Aplysina cavernicola , 2013, Marine drugs.

[66]  Abimael D Rodríguez,et al.  Marine Pharmacology in 2009–2011: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, and Antiviral Activities; Affecting the Immune and Nervous Systems, and other Miscellaneous Mechanisms of Action † , 2013, Marine drugs.

[67]  Richard T. Lee,et al.  Thioredoxin and thioredoxin target proteins: from molecular mechanisms to functional significance. , 2013, Antioxidants & redox signaling.

[68]  R. Quinn,et al.  Bromotyrosine alkaloids from the Australian marine sponge Pseudoceratina verrucosa. , 2013, Journal of natural products.

[69]  R. Capon,et al.  Structural and stereochemical investigations into bromotyrosine-derived metabolites from southern Australian marine sponges, Pseudoceratina spp. , 2012 .

[70]  G. Archer,et al.  Characterization of the Staphylococcus aureus rRNA Methyltransferase Encoded by orfX, the Gene Containing the Staphylococcal Chromosome Cassette mec (SCCmec) Insertion Site* , 2012, The Journal of Biological Chemistry.

[71]  L. Prade,et al.  Structure-guided design, synthesis and biological evaluation of novel DNA ligase inhibitors with in vitro and in vivo anti-staphylococcal activity. , 2012, Bioorganic & medicinal chemistry letters.

[72]  D. Youssef,et al.  Subereamolline A as a Potent Breast Cancer Migration, Invasion and Proliferation Inhibitor and Bioactive Dibrominated Alkaloids from the Red Sea Sponge Pseudoceratina arabica , 2012, Marine drugs.

[73]  I. Tanaka,et al.  Structural reorganization of the bacterial cell-division protein FtsZ from Staphylococcus aureus. , 2012, Acta crystallographica. Section D, Biological crystallography.

[74]  Supriya Tilvi,et al.  Identifying the Related Compounds Using Electrospray Ionization Tandem Mass Spectrometry: Bromotyrosine Alkaloids from Marine Sponge Psammaplysilla Purpurea , 2012, European journal of mass spectrometry.

[75]  V. Avery,et al.  Ianthelliformisamines A-C, antibacterial bromotyrosine-derived metabolites from the marine sponge Suberea ianthelliformis. , 2012, Journal of natural products.

[76]  L. Foster,et al.  Cheminformatics-driven discovery of selective, nanomolar inhibitors for staphylococcal pyruvate kinase. , 2012, ACS chemical biology.

[77]  R. Brunham,et al.  Methicillin-resistant Staphylococcus aureus (MRSA) Pyruvate Kinase as a Target for Bis-indole Alkaloids with Antibacterial Activities* , 2011, The Journal of Biological Chemistry.

[78]  N. Reiner,et al.  Synergistic effects of baicalein with ciprofloxacin against NorA over-expressed methicillin-resistant Staphylococcus aureus (MRSA) and inhibition of MRSA pyruvate kinase. , 2011, Journal of ethnopharmacology.

[79]  D. Youssef,et al.  Brominated arginine-derived alkaloids from the red sea sponge Suberea mollis. , 2011, Journal of natural products.

[80]  J. Imhoff,et al.  Bioactive Metabolites from the Sponge Suberea sp. , 2010, Chemistry & biodiversity.

[81]  Kristin K. Brown,et al.  Type IIA topoisomerase inhibition by a new class of antibacterial agents , 2010, Nature.

[82]  Matej Oresic,et al.  MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data , 2010, BMC Bioinformatics.

[83]  P. Charifson,et al.  Discovery of pyrazolthiazoles as novel and potent inhibitors of bacterial gyrase. , 2010, Bioorganic & medicinal chemistry letters.

[84]  Arthur J. Olson,et al.  AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading , 2009, J. Comput. Chem..

[85]  Si Zhang,et al.  Steroids and alkaloids from the South China Sea sponge Axinella sp. , 2009, Journal of Asian natural products research.

[86]  M. Harris,et al.  Structural comparison of chromosomal and exogenous dihydrofolate reductase from Staphylococcus aureus in complex with the potent inhibitor trimethoprim , 2009, Proteins.

[87]  K. Shin‐ya,et al.  JBIR-44, a new bromotyrosine compound from a marine sponge Psammaplysilla purpurea , 2009, The Journal of Antibiotics.

[88]  A. Iwasaki,et al.  20-N-Methylpurpuramine E: New Bromotyrosine-Derived Metabolite from Okinawan Marine Sponge Pseudoceratina purpurea , 2008 .

[89]  P. Schupp,et al.  Activated Chemical Defense in Marine Sponges—a Case Study on Aplysinella rhax , 2008, Journal of Chemical Ecology.

[90]  D. Youssef,et al.  Bioactive brominated metabolites from the red sea sponge Suberea mollis. , 2008, Journal of natural products.

[91]  L. A. Shaala,et al.  Bioactive brominated metabolites from the Red Sea sponge Pseudoceratina arabica. , 2008, Journal of natural products.

[92]  C. J. Freeman,et al.  Chemical variability within the marine sponge Aplysina fulva , 2008 .

[93]  Jean-Loup Guillaume,et al.  Fast unfolding of communities in large networks , 2008, 0803.0476.

[94]  Wenhan Lin,et al.  Brominated derivatives from the Chinese sponge Pseudoceratina sp. , 2008, Journal of Asian natural products research.

[95]  S. Khalifa,et al.  Subereaphenol A, a new Cytotoxic and Antimicrobial Dibrominated Phenol from the Red Sea Sponge Suberea Mollis , 2008 .

[96]  K. Ohlsen,et al.  Novel targets for antibiotics in Staphylococcus aureus. , 2007, Future microbiology.

[97]  P. Proksch,et al.  Antifouling Activity of Bromotyrosine-Derived Sponge Metabolites and Synthetic Analogues , 2007, Marine Biotechnology.

[98]  T. Molinski,et al.  Highly polar spiroisoxazolines from the sponge Aplysina fulva. , 2007, Journal of natural products.

[99]  K. Marotti,et al.  Allosteric inhibition of Staphylococcus aureus d-alanine:d-alanine ligase revealed by crystallographic studies , 2006, Proceedings of the National Academy of Sciences.

[100]  C. L. Silva,et al.  Antimycobacterial brominated metabolites from two species of marine sponges. , 2006, Planta medica.

[101]  Pichan Sawangwong,et al.  Dibromotyrosine Derivatives, a Maleimide, Aplysamine-2 and Other Constituents of the Marine Sponge Pseudoceratina purpurea , 2005 .

[102]  T. Molinski,et al.  Stereochemical heterogeneity in Verongid sponge metabolites. Absolute stereochemistry of (+)-fistularin-3 and (+)-11-epi-fistularin-3 by microscale LCMS-Marfey's analysis. , 2005, Journal of natural products.

[103]  Andrew I Su,et al.  HierS: hierarchical scaffold clustering using topological chemical graphs. , 2005, Journal of medicinal chemistry.

[104]  P. Proksch,et al.  Biotransformation of brominated compounds in the marine spongeVerongia aerophoba — Evidence for an induced chemical defense? , 1993, Naturwissenschaften.

[105]  J. Vacelet,et al.  Araplysillins-I and-II: Biologically active dibromotyrosine derivatives from the spongePsammaplysilla arabica , 1990, Experientia.

[106]  M. Hamann,et al.  The marine bromotyrosine derivatives. , 2005, The Alkaloids. Chemistry and biology.

[107]  B. Mikami,et al.  Crystal structure of peptide deformylase from Staphylococcus aureus in complex with actinonin, a naturally occurring antibacterial agent , 2004, Proteins.

[108]  P. Parameswaran,et al.  New bromotyrosine alkaloids from the marine sponge Psammaplysilla purpurea , 2004 .

[109]  P. Proksch,et al.  Chemical Defense of Mediterranean Sponges Aplysina cavernicola and Aplysina aerophoba , 2004, Zeitschrift fur Naturforschung. C, Journal of biosciences.

[110]  I. Borovok,et al.  Transcriptional Regulation of the Staphylococcus aureus Thioredoxin and Thioredoxin Reductase Genes in Response to Oxygen and Disulfide Stress , 2004, Journal of bacteriology.

[111]  R. Andersen,et al.  Ceratamines A and B, antimitotic heterocyclic alkaloids isolated from the marine sponge Pseudoceratina sp. collected in Papua New Guinea. , 2003, Organic letters.

[112]  T. Rao,et al.  Two new bromotyrosine-derived metabolites from the sponge Psammaplysilla purpurea. , 2003, Chemical & pharmaceutical bulletin.

[113]  Bernard Rees,et al.  Conformational movements and cooperativity upon amino acid, ATP and tRNA binding in threonyl-tRNA synthetase. , 2003, Journal of molecular biology.

[114]  O. Nureki,et al.  Structural Basis for the Recognition of Isoleucyl-Adenylate and an Antibiotic, Mupirocin, by Isoleucyl-tRNA Synthetase* , 2001, The Journal of Biological Chemistry.

[115]  E. Baldwin,et al.  A structural variation for MurB: X-ray crystal structure of Staphylococcus aureus UDP-N-acetylenolpyruvylglucosamine reductase (MurB). , 2001, Biochemistry.

[116]  M. Ojika,et al.  Ianthesines A—D, Four Novel Dibromotyrosine-Derived Metabolites from a Marine Sponge, Ianthella sp. , 2000 .

[117]  M. Tsuda,et al.  Ma'edamines A and B, cytotoxic bromotyrosine alkaloids with a unique 2(1H)pyrazinone ring from sponge Suberea sp , 2000 .

[118]  M. Ojika,et al.  Ianthesines A–D, Four Novel Dibromotyrosine-Derived Metabolites from a Marine Sponge, Ianthella sp. , 2000 .

[119]  Y. Venkateswarlu,et al.  Two Bromo Compounds from the Sponge Psammaplysilla purpurea. , 1999 .

[120]  F. Arvelo,et al.  11-Deoxyfistularin-3, a new cytotoxic metabolite from the caribbean sponge Aplysina fistularis insularis. , 1999, Journal of natural products.

[121]  P. Proksch,et al.  Bromoisoxazoline Alkaloids from the Caribbean Sponge Aplysina insularis , 1999 .

[122]  J. Braekman,et al.  5-Bromoverongamine, a novel antifouling tyrosine alkaloid from the sponge Pseudoceratina sp. , 1998 .

[123]  G. Bemis,et al.  The properties of known drugs. 1. Molecular frameworks. , 1996, Journal of medicinal chemistry.

[124]  H. Hirota,et al.  Ceratinamine: An Unprecedented Antifouling Cyanoformamide from the Marine Sponge Pseudoceratina purpurea. , 1996, The Journal of organic chemistry.

[125]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[126]  P. Proksch,et al.  Defense metabolites from the marine sponge Verongia aerophoba , 1996 .

[127]  E. Fattorusso,et al.  Chemistry of Verongida Sponges—V. Brominated metabolites from the Caribbean Sponge Pseudoceratina sp. , 1995 .

[128]  Takuma Sasaki,et al.  Purealidins A-R, New Bromotyrosine Alkaloids from an Okinawan Marine Sponge Psammaplysilla purea , 1995 .

[129]  M. Tsuda,et al.  Lipopurealins D and E and Purealidin H, New Bromotyrosine Alkaloids from the Okinawan Marine Sponge Psammaplysilla purea , 1995 .

[130]  M. Westerfield The zebrafish book : a guide for the laboratory use of zebrafish (Danio rerio) , 1995 .

[131]  S. Pomponi,et al.  Verongamine, a novel bromotyrosine-derived histamine H3-antagonist from the marine sponge Verongula gigantea. , 1994, Journal of natural products.

[132]  H. J. Woerdenbag,et al.  Biotransformation of the Brominated Compounds in the Marine Sponge Verongia aerophoba: Evidence for an Induced Chemical Defense? , 1993 .

[133]  H. J. Woerdenbag,et al.  Antibiotic and Cytotoxic Activity of Brominated Compounds from the Marine Sponge Verongia aerophoba , 1993, Zeitschrift fur Naturforschung. C, Journal of biosciences.

[134]  P. Proksch,et al.  Brominated Secondary Compounds from the Marine Sponge Verongia aerophoba and the Sponge Feeding Gastropod Tylodina perversa , 1993 .

[135]  I. Piña,et al.  The structures of aplysinamisines I, II, and III; new bromotyrosine-derived alkaloids from the Caribbean sponge Aplysina cauliformis. , 1993, Journal of natural products.

[136]  S. Matsunaga,et al.  Purpuramines A-I, new bromotyrosine-derived metabolites from the marine sponge Psammaplysilla purpurea , 1993 .

[137]  M. Tsuda,et al.  Purealidins E-G, New Bromotyrosine Alkaloids from the Okinawan Marine Sponge Psammaplysilla purea , 1992 .

[138]  A. Rodríguez,et al.  11-oxoaerothionin: a cytotoxic antitumor bromotyrosine-derived alkaloid from the Caribbean marine sponge Aplysina lacunosa. , 1992, Journal of natural products.

[139]  Edward M. Reingold,et al.  Graph drawing by force‐directed placement , 1991, Softw. Pract. Exp..

[140]  James Dm,et al.  Two new brominated tyrosine derivatives from the sponge Druinella (= Psammaplysilla) purpurea. , 1991 .

[141]  D. Faulkner,et al.  Two new dibromotyrosine derivatives from the caribbean sponge pseudoceratina crassa , 1991 .

[142]  M. Kernan,et al.  Chemistry of Sponges, VII. 11,19-Dideoxyfistularin 3 and 11-Hydroxyaerothionin, Bromotyrosine Derivatives from Pseudoceratina durissima , 1990 .

[143]  W. Müller,et al.  Inhibition of intrinsic protein tyrosine kinase activity of EGF-receptor kinase complex from human breast cancer cells by the marine sponge metabolite (+)-aeroplysinin-1. , 1990, Comparative biochemistry and physiology. B, Comparative biochemistry.

[144]  R. Capon,et al.  Two New Bromotyrosine-Derived Metabolites from an Australian Marine Sponge, Aplysina sp. , 1989 .

[145]  W. Müller,et al.  Cytostatic Activity of Aeroplysinin-1 against Lymphoma and Epithelioma Cells , 1989, Zeitschrift fur Naturforschung. C, Journal of biosciences.

[146]  A. Weinheimer,et al.  2-hydroxy, 3,5-dibromo, 4-methoxyphenylacetamide. a dibromotyrosine metabolite from , 1977 .

[147]  E. Fattorusso,et al.  Aerothionin and homoaerothionin: two tetrabromo spirocyclohexadienylisoxazoles from Verongia sponges , 1972 .

[148]  E. Fattorusso,et al.  Aeroplysinin-1, an antibacterial bromo-compound from the sponge Verongia aerophoba. , 1972, Journal of the Chemical Society. Perkin transactions 1.