Dynamic Latent Class Analysis

This article describes the general time-intensive longitudinal latent class modeling framework implemented in Mplus. For each individual a latent class variable is measured at each time point and the latent class changes across time follow a Markov process (i.e., a hidden or latent Markov model), with subject-specific transition probabilities that are estimated as random effects. Such a model for single-subject data has been referred to as the regime-switching state-space model. The latent class variable can be measured by continuous or categorical indicators, under the local independence condition, or more generally by a class-specific structural equation model or a dynamic structural equation model. We discuss the Bayesian estimation based on Markov chain Monto Carlo, which allows modeling with arbitrary long time series data and many random effects. The modeling framework is illustrated with several simulation studies.

[1]  Jan-Benedict E. M. Steenkamp,et al.  Finite Mixture Multilevel Multidimensional Ordinal IRT Models for Large Scale Cross-Cultural Research , 2010 .

[2]  P. Molenaar A Manifesto on Psychology as Idiographic Science: Bringing the Person Back Into Scientific Psychology, This Time Forever , 2004 .

[3]  B. Graubard,et al.  Latent Class Analysis of Complex Sample Survey Data , 2002 .

[4]  Eldad Davidov,et al.  Using a Multilevel Structural Equation Modeling Approach to Explain Cross-Cultural Measurement Noninvariance , 2012 .

[5]  Ellen L. Hamaker,et al.  Comparisons of Four Methods for Estimating a Dynamic Factor Model , 2008 .

[6]  Ulrich Ebner-Priemer,et al.  The Role of Ambulatory Assessment in Psychological Science , 2014, Current directions in psychological science.

[7]  B. Muthén,et al.  Multilevel Mixture Models , 2006 .

[8]  Chang‐Jin Kim,et al.  State Space Models with Regime Switching , 1999 .

[9]  Zhiyong Zhang,et al.  Bayesian Estimation of Categorical Dynamic Factor Models , 2007 .

[10]  Ellen L Hamaker,et al.  Modeling BAS Dysregulation in Bipolar Disorder , 2016, Assessment.

[11]  Daniel J Bauer,et al.  Distributional assumptions of growth mixture models: implications for overextraction of latent trajectory classes. , 2003, Psychological methods.

[12]  Peter C. M. Molenaar,et al.  A dynamic factor model for the analysis of multivariate time series , 1985 .

[13]  T. Asparouhov,et al.  Using Bayesian Priors for More Flexible Latent Class Analysis , 2011 .

[14]  Ellen L. Hamaker,et al.  Regime Switching State-Space Models Applied to Psychological Processes: Handling Missing Data and Making Inferences , 2012 .

[15]  Bengt Muthén,et al.  Dynamic Structural Equation Models , 2018 .

[16]  Bengt Muthén,et al.  Bayesian Analysis Using Mplus: Technical Implementation , 2010 .

[17]  B. Muthén,et al.  Multiple Group Multilevel Analysis , 2012 .

[18]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[19]  T. Asparouhov General Random Effect Latent Variable Modeling : Random Subjects , Items , Contexts , and Parameters , 2012 .

[20]  Jean-Paul Fox,et al.  Relaxing Measurement Invariance in Cross-National Consumer Research Using a Hierarchical IRT Model , 2007 .

[21]  Scott L. Thomas,et al.  Multilevel Mixture Models , 2015 .