R-curve and subcritical crack growth in lead zirconate titanate ceramics

[1]  J. Rödel,et al.  Effect of geometry and electrical boundary conditions on R-curves for lead zirconate titanate ceramics , 2006 .

[2]  G. Schneider,et al.  In situ investigation of subcritical crack growth in lead zirconate titanate ceramics using atomic force microscopy , 2005 .

[3]  C. Randall,et al.  Intrinsic and Extrinsic Size Effects in Fine-Grained Morphotropic-Phase-Boundary Lead Zirconate Titanate Ceramics , 2005 .

[4]  J. Rödel,et al.  Effect of Poling Direction on R-Curve Behavior in Lead Zirconate Titanate , 2004 .

[5]  G. Schneider,et al.  R‐Curve Behavior and Crack‐Closure Stresses in Barium Titanate and (Mg,Y)‐PSZ Ceramics , 2004 .

[6]  J. Rödel,et al.  Crack tip switching zone in ferroelectric ferroelastic materials , 2004 .

[7]  J. Rödel,et al.  Subcritical Crack Growth in Lead Zirconate Titanate , 2004 .

[8]  G. Fantozzi,et al.  Contribution to the comprehension of dissipation phenomena in lead zirconate titanate: aliovalent doping effect , 2004 .

[9]  C. Sun,et al.  Domain‐Switching Criteria for Ferroelectric Materials Subjected to Electrical and Mechanical Loads , 2004 .

[10]  J. Rödel,et al.  R-curves of lead zirconate titanate (PZT) , 2003 .

[11]  S. Lucato Crack‐Growth‐Velocity‐Dependent R‐Curve Behavior in Lead Zirconate Titanate , 2003 .

[12]  Fritz Aldinger,et al.  R-curve effect, influence of electric field and process zone in BaTiO3 ceramics , 2002 .

[13]  Michael J. Hoffmann,et al.  Contribution from Ferroelastic Domain Switching Detected Using X‐ray Diffraction to R‐Curves in Lead Zirconate Titanate Ceramics , 2001 .

[14]  J. Calderon‐Moreno,et al.  Fracture toughness anisotropy by indentation and SEVNB on tetragonal PZT polycrystals , 2001 .

[15]  Theo Fett,et al.  On the interpretation of different R-curves for soft PZT , 2001 .

[16]  J. Rödel,et al.  Short Crack R‐Curves in Ferroelectric and Electrostrictive PLZT , 2001 .

[17]  F. Fang,et al.  Critical role of domain switching on the fracture toughness of poled ferroelectrics , 2001 .

[18]  B. Véronique Elaboration and characterization of Nb-doped PZT ceramics , 2001 .

[19]  G. Schneider,et al.  R-curve behavior of BaTiO3- and PZT ceramics under the influence of an electric field applied parallel to the crack front , 2000 .

[20]  B. Lawn Fracture of Brittle Solids by Brian Lawn , 1993 .

[21]  G. Arlt Twinning in ferroelectric and ferroelastic ceramics: stress relief , 1990 .

[22]  G. Arlt,et al.  The Influence of the Microstructure on the Properties of Ferroelectric Ceramics , 1995 .

[23]  A. Virkar,et al.  Fracture Mechanisms in Ferroelectric‐Ferroelastic Lead Zirconate Titanate (Zr: Ti=0.54:0.46) Ceramics , 1990 .

[24]  V. M. Chushko,et al.  Anisotropy of Fracture Toughness of Piezoelectric Ceramics , 1985 .

[25]  W. Pfeiffer,et al.  Domain switching in process zones of PZT: characterization by microdiffraction and fracture mechanical methods , 2003 .

[26]  A. Chmel,et al.  Raman Study of the Interface between Hot-Pressed Silica Parts , 2001 .

[27]  Bornand Véronique,et al.  Elaboration and characterization of Nb-doped PZT ceramics , 2001 .

[28]  Gerold A. Schneider,et al.  R-curve behaviour of BaTiO3 due to stress-induced ferroelastic domain switching , 1997 .

[29]  J. Chevalier,et al.  Double-torsion testing a 3Y-TZP ceramic , 1996 .

[30]  S. Baik,et al.  R-curve behaviour of PZT ceramics near the morphotropic phase boundary , 1994, Journal of Materials Science.

[31]  A. Evans,et al.  Fracture Mechanics of Ceramics , 1986 .