On the Dynamics of Liquid-Vapor Phase Transition

We consider a multidimensional model for the dynamics of liquid-vapor phase transitions. In the present context, liquid and vapor are treated as different species with different volume fractions and different molecular weights. The model presented here is a prototype of a “binary fluid mixture” and is formulated by a system that generalizes the Navier–Stokes(–Fourier) equations in Eulerian coordinates. This system takes now a new form due to the choice of rather complex constitutive relations that can accommodate appropriately the physical context. The setting of the problem presented in this work is motivated by physical considerations. The transport fluxes satisfy rather general constitutive laws, the viscosity and heat conductivity depend on the temperature, and the pressure law is a nonlinear function of the temperature depending on the mass density fraction of the vapor (liquid) in the fluid as well as the molecular weights of the individual species. The existence of globally defined weak solutions o...

[1]  Haitao Fan,et al.  Chapter 4 - Dynamic Flows with Liquid/Vapor Phase Transitions , 2002 .

[2]  D. Donatelli,et al.  Communications in Mathematical Physics On the Motion of a Viscous Compressible Radiative-Reacting Gas , 2006 .

[3]  Mathematisches Forschungsinstitut Oberwolfach,et al.  Hyperbolic Conservation Laws , 2004 .

[4]  P. Lions Mathematical topics in fluid mechanics , 1996 .

[5]  On the Navier-Stokes Equations for Exothermically Reacting Compressible Fluids , 2002 .

[6]  E. Feireisl,et al.  Global existence for the full system of the Navier-Stokes equations of a viscous heat conducting fluid , 2003 .

[7]  R. Schwarzenberger ORDINARY DIFFERENTIAL EQUATIONS , 1982 .

[8]  David Hoff,et al.  Global solutions of the compressible navier-stokes equations with larger discontinuous initial data , 2000 .

[9]  V. V. Shelukhin,et al.  Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas: PMM vol. 41, n≗ 2, 1977, pp. 282–291 , 1977 .

[10]  Ronald R. Coifman,et al.  On commutators of singular integrals and bilinear singular integrals , 1975 .

[11]  K. Zybin Kinetic theory of particles and photons , 1988 .

[12]  Eduard Feireisl,et al.  On the Dynamics of Gaseous Stars , 2004 .

[13]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[14]  David Hoff,et al.  Discontinuous Solutions of the Navier-Stokes Equations for Multidimensional Flows of Heat-Conducting Fluids , 1997 .

[15]  Eduard Feireisl,et al.  Multicomponent reactive flows: Global-in-time existence for large data , 2008 .

[16]  D. Donatelli,et al.  A Multidimensional Model for the Combustion of Compressible Fluids , 2007 .

[17]  HAITAO FAN,et al.  On a Model of the Dynamics of Liquid/Vapor Phase Transitions , 2000, SIAM J. Appl. Math..

[18]  J. D. Gunton,et al.  Homogeneous Nucleation , 1999 .

[19]  P. Hartman Ordinary Differential Equations , 1965 .

[20]  C. M. Dafermos,et al.  Hyberbolic [i.e. Hyperbolic] conservation laws in continuum physics , 2005 .

[21]  E. Feireisl,et al.  On a simple model of reacting compressible flows arising in astrophysics , 2005, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[22]  P. Lions,et al.  Ordinary differential equations, transport theory and Sobolev spaces , 1989 .

[23]  Alexandre Ern,et al.  Multicomponent transport algorithms , 1994 .

[24]  Eduard Feireisl,et al.  On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable , 2001 .

[25]  L. Waldmann,et al.  Formale kinetische Theorie von Gasgemischen aus anregbaren Molekülen , 1962 .

[26]  P. Lions,et al.  On the Fokker-Planck-Boltzmann equation , 1988 .

[27]  S. Benzoni-Gavage Nonuniqueness of phase transitions near the Maxwell line , 1999 .

[28]  Eduard Feireisl,et al.  Compressible Navier–Stokes Equations with a Non-Monotone Pressure Law , 2002 .

[29]  E. Feireisl On the motion of a viscous, compressible, and heat conducting fluid , 2004 .

[30]  M. Slemrod Admissibility criteria for propagating phase boundaries in a van der Waals fluid , 1983 .

[31]  E. Feireisl,et al.  On the Existence of Globally Defined Weak Solutions to the Navier—Stokes Equations , 2001 .

[32]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[33]  Eduard Feireisl,et al.  A regularizing effect of radiation in the equations of fluid dynamics , 2005 .

[34]  Clifford Ambrose Truesdell Historical Introit The origins of rational thermodynamics , 1984 .

[35]  John P. Cox,et al.  Principles of stellar structure , 1968 .

[36]  David Hoff,et al.  Global Solutions to a Model for Exothermically Reacting, Compressible Flows with Large Discontinuous Initial Data , 2003 .

[37]  Eduard Feireisl,et al.  Dynamics of Viscous Compressible Fluids , 2004 .

[38]  V. Giovangigli Multicomponent flow modeling , 1999 .

[39]  E. Feireisl,et al.  On Compactness of Solutions to the Navier–Stokes Equations of Compressible Flow , 2000 .

[40]  Gui-Qiang G. Chen Global solutions to the compressible Navier-Stokes equations for a reacting mixture , 1992 .