The flatness of Lamellipodia explained by the interaction between actin dynamics and membrane deformation.

[1]  P. Chavrier,et al.  Molecular Biology of the Cell , 1990, Color Atlas of Clinical Hematology.

[2]  Ronald Rice,et al.  Mechanics of the Cell , 2016 .

[3]  C. Schmeiser,et al.  An extended Filament Based Lamellipodium Model produces various moving cell shapes in the presence of chemotactic signals. , 2015, Journal of theoretical biology.

[4]  R. Huebner,et al.  Bin/Amphiphysin/Rvs (BAR) family members bend membranes in cells , 2014, Scientific Reports.

[5]  C. Schmeiser,et al.  Electron Tomography and Simulation of Baculovirus Actin Comet Tails Support a Tethered Filament Model of Pathogen Propulsion , 2014, PLoS biology.

[6]  C. Schmeiser,et al.  Arp2/3 complex is essential for actin network treadmilling as well as for targeting of capping protein and cofilin , 2013, Molecular biology of the cell.

[7]  Vinzenz M Unger,et al.  Membrane curvature and its generation by BAR proteins. , 2012, Trends in biochemical sciences.

[8]  Darran M. Yates Axon growth: Separating growth from regrowth , 2012, Nature Reviews Neuroscience.

[9]  Christian Schmeiser,et al.  Actin branching in the initiation and maintenance of lamellipodia , 2012, Journal of Cell Science.

[10]  Christian Schmeiser,et al.  Actin filament tracking in electron tomograms of negatively stained lamellipodia using the localized radon transform. , 2012, Journal of structural biology.

[11]  C. Schmeiser,et al.  Simulation of lamellipodial fragments , 2012, Journal of mathematical biology.

[12]  Frank Noé,et al.  Structural modeling and molecular dynamics simulation of the actin filament , 2011, Proteins.

[13]  J. Bamburg,et al.  Roles of ADF/cofilin in actin polymerization and beyond , 2010, F1000 biology reports.

[14]  Thomas Duke,et al.  Simulation of cell motility that reproduces the force–velocity relationship , 2010, Proceedings of the National Academy of Sciences.

[15]  Guenter P. Resch,et al.  Electron tomography reveals unbranched networks of actin filaments in lamellipodia , 2010, Nature Cell Biology.

[16]  G. Papoian,et al.  Supplemental Information : Mechano-Chemical Feedbacks Regulate Actin Mesh Growth in Lamellipodial Protrusions , 2010 .

[17]  Thomas D. Pollard,et al.  Actin, a Central Player in Cell Shape and Movement , 2009, Science.

[18]  Ken Jacobson,et al.  Actin-myosin viscoelastic flow in the keratocyte lamellipod. , 2009, Biophysical journal.

[19]  G. O'Neill,et al.  The coordination between actin filaments and adhesion in mesenchymal migration , 2009, Cell adhesion & migration.

[20]  Michael P. O’Donnell,et al.  Axon growth and guidance: receptor regulation and signal transduction. , 2009, Annual review of neuroscience.

[21]  K. Rottner,et al.  F- and G-Actin Concentrations in Lamellipodia of Moving Cells , 2009, PloS one.

[22]  P. Kinnunen,et al.  Molecular Mechanisms of Membrane Deformation by I-BAR Domain Proteins , 2009, Current Biology.

[23]  R. Dickinson A Multi-Scale Mechanistic Model for Actin-Propelled Bacteria , 2008 .

[24]  Ben Fabry,et al.  Contractile forces in tumor cell migration. , 2008, European journal of cell biology.

[25]  C. Mackay,et al.  Moving targets: cell migration inhibitors as new anti-inflammatory therapies , 2008, Nature Immunology.

[26]  L. Machesky Lamellipodia and filopodia in metastasis and invasion , 2008, FEBS letters.

[27]  K. Rottner,et al.  Differentially oriented populations of actin filaments generated in lamellipodia collaborate in pushing and pausing at the cell front , 2008, Nature Cell Biology.

[28]  Giorgio Scita,et al.  IRSp53: crossing the road of membrane and actin dynamics in the formation of membrane protrusions. , 2008, Trends in cell biology.

[29]  M. Lemmon,et al.  Membrane recognition by phospholipid-binding domains , 2008, Nature Reviews Molecular Cell Biology.

[30]  G. Meer,et al.  Membrane lipids: where they are and how they behave , 2008, Nature Reviews Molecular Cell Biology.

[31]  T. Sang,et al.  Genetics and phylogenetics of rice domestication. , 2007, Current opinion in genetics & development.

[32]  Zachary Pincus,et al.  Emergence of Large-Scale Cell Morphology and Movement from Local Actin Filament Growth Dynamics , 2007, PLoS biology.

[33]  Pingwen Zhang,et al.  Continuum theory of a moving membrane. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  Thomas E. Schaus,et al.  Self-organization of actin filament orientation in the dendritic-nucleation/array-treadmilling model , 2007, Proceedings of the National Academy of Sciences.

[35]  Pekka Lappalainen,et al.  Missing-in-metastasis and IRSp53 deform PI(4,5)P2-rich membranes by an inverse BAR domain–like mechanism , 2007, The Journal of cell biology.

[36]  Marileen Dogterom,et al.  Direct measurement of force generation by actin filament polymerization using an optical trap , 2007, Proceedings of the National Academy of Sciences.

[37]  Feng Feng,et al.  Finite element modeling of lipid bilayer membranes , 2006, J. Comput. Phys..

[38]  Manfred Radmacher,et al.  Direct measurement of the lamellipodial protrusive force in a migrating cell , 2006, The Journal of cell biology.

[39]  Denis Wirtz,et al.  Morphology of the lamellipodium and organization of actin filaments at the leading edge of crawling cells. , 2005, Biophysical journal.

[40]  Ray Keller,et al.  Cell migration during gastrulation. , 2005, Current opinion in cell biology.

[41]  Yiider Tseng,et al.  How actin crosslinking and bundling proteins cooperate to generate an enhanced cell mechanical response. , 2005, Biochemical and biophysical research communications.

[42]  Wonhwa Cho,et al.  Membrane-protein interactions in cell signaling and membrane trafficking. , 2005, Annual review of biophysics and biomolecular structure.

[43]  D. Purich,et al.  Force generation by cytoskeletal filament end-tracking proteins. , 2004, Biophysical journal.

[44]  Shigeaki Miyamoto,et al.  IRSp53 is colocalised with WAVE2 at the tips of protruding lamellipodia and filopodia independently of Mena , 2003, Journal of Cell Science.

[45]  Michael Edidin,et al.  Lipids on the frontier: a century of cell-membrane bilayers , 2003, Nature Reviews Molecular Cell Biology.

[46]  Alexander van Oudenaarden,et al.  Probing polymerization forces by using actin-propelled lipid vesicles , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[47]  George Oster,et al.  Force generation by actin polymerization II: the elastic ratchet and tethered filaments. , 2003, Biophysical journal.

[48]  Klemens Rottner,et al.  The lamellipodium: where motility begins. , 2002, Trends in cell biology.

[49]  D. Purich,et al.  Clamped-filament elongation model for actin-based motors. , 2002, Biophysical journal.

[50]  M. Nieto,et al.  Cell movements during vertebrate development: integrated tissue behaviour versus individual cell migration. , 2001, Current opinion in genetics & development.

[51]  Gareth E. Jones,et al.  Cellular signaling in macrophage migration and chemotaxis , 2000, Journal of leukocyte biology.

[52]  Laura M. Machesky,et al.  Scar1 and the related Wiskott–Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex , 1998, Current Biology.

[53]  L. Cramer,et al.  Molecular mechanism of actin-dependent retrograde flow in lamellipodia of motile cells. , 1997, Frontiers in bioscience : a journal and virtual library.

[54]  G. Oster,et al.  Cell motility driven by actin polymerization. , 1996, Biophysical journal.

[55]  J. Howard,et al.  Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape , 1993, The Journal of cell biology.

[56]  A. Weeds,et al.  F-actin capping proteins. , 1993, Current opinion in cell biology.

[57]  W. Kabsch,et al.  Atomic model of the actin filament , 1990, Nature.

[58]  Evans,et al.  Entropy-driven tension and bending elasticity in condensed-fluid membranes. , 1990, Physical review letters.

[59]  P. Janmey,et al.  The actin filament-severing domain of plasma gelsolin , 1986, The Journal of cell biology.

[60]  S. Zigmond,et al.  Sensory adaptation of leukocytes to chemotactic peptides , 1979, The Journal of cell biology.

[61]  W. Webb,et al.  Lateral diffusion in phospholipid bilayer membranes and multilamellar liquid crystals. , 1978, Biochemistry.

[62]  A. Wegner,et al.  Head to tail polymerization of actin. , 1976, Journal of molecular biology.

[63]  W. Helfrich Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[64]  C. Schmeiser,et al.  A Finite Elemente Method for Cell Membranes with Tethered Obstacles , 2015 .

[65]  Nandita Mitra,et al.  A moving target: Image guidance for stereotactic body radiation therapy for early-stage non-small cell lung cancer. , 2013, Practical radiation oncology.

[66]  Daniel Baum,et al.  Automated segmentation of electron tomograms for a quantitative description of actin filament networks. , 2012, Journal of structural biology.

[67]  W. Harris,et al.  5 – Axon growth and guidance , 2012 .

[68]  Jan Müller Baculovirus-induced actin comet tails : Structure of the propulsion machinery , 2011 .

[69]  R. Dickinson Models for actin polymerization motors , 2009, Journal of mathematical biology.

[70]  Gaudenz Danuser,et al.  Supporting Material : Modeling of protrusion phenotypes driven by the actin-membrane interaction , 2009 .

[71]  E. Fedorov,et al.  Tseng, Y. et al. How actin crosslinking and bundling proteins cooperate to generate an enhanced cell mechanical response. Biochem. Biophys. Res. Commun. 334, 183-192 , 2005 .

[72]  Charles T. Loop,et al.  Smooth Subdivision Surfaces Based on Triangles , 1987 .