Efficient estimation of auto‐regression parameters and innovation distributions for semiparametric integer‐valued AR(p) models

Integer-valued auto-regressive (INAR) processes have been introduced to model non-negative integer-valued phenomena that evolve over time. The distribution of an INAR("p") process is essentially described by two parameters: a vector of auto-regression coefficients and a probability distribution on the non-negative integers, called an immigration or innovation distribution. Traditionally, parametric models are considered where the innovation distribution is assumed to belong to a parametric family. The paper instead considers a more realistic semiparametric INAR("p") model where there are essentially no restrictions on the innovation distribution. We provide an (semiparametrically) efficient estimator of both the auto-regression parameters and the innovation distribution. Copyright (c) 2009 Royal Statistical Society.

[1]  Mohamed Alosh,et al.  First‐Order Integer‐Valued Autoregressive (INAR (1)) Process: Distributional and Regression Properties , 1988 .

[2]  Peter Thyregod,et al.  Integer Valued Autoregressive Models for Tipping Bucket Rainfall Measurements , 1999 .

[3]  Kurt Brännäs,et al.  Plants' entry and exit in Swedish municipalities , 1999 .

[4]  Wolfgang Wefelmeyer,et al.  Quasi-likelihood models and optimal inference , 1996 .

[5]  P. Bickel Efficient and Adaptive Estimation for Semiparametric Models , 1993 .

[6]  P. Doukhan Mixing: Properties and Examples , 1994 .

[7]  Mohamed Alosh,et al.  FIRST‐ORDER INTEGER‐VALUED AUTOREGRESSIVE (INAR(1)) PROCESS , 1987 .

[8]  G. Pap,et al.  Fluctuation limit of branching processes with immigration and estimation of the means , 2005, Advances in Applied Probability.

[9]  P. Massart,et al.  Invariance principles for absolutely regular empirical processes , 1995 .

[10]  Robert C. Jung,et al.  Binomial thinning models for integer time series , 2006 .

[11]  Geneviève Gauthier,et al.  BRANCHING PROCESSES WITH IMMIGRATION AND INTEGER-VALUED TIME SERIES , 1995 .

[12]  Soohan Ahn,et al.  Analysis of the M/D/1-type queue based on an integer-valued first-order autoregressive process , 2000, Oper. Res. Lett..

[13]  Christian Gourieroux,et al.  Heterogeneous INAR(1) model with application to car insurance , 2004 .

[14]  A. Van Der Waart,et al.  Efficiency and Hadamard differentiability , 1991 .

[15]  G. Pap,et al.  Asymptotic Behaviour of Estimators of the Parameters of Nearly Unstable INAR(1) Models , 2003 .

[16]  G. Pap,et al.  Asymptotic inference for nearly unstable INAR(1) models , 2003, Journal of Applied Probability.

[17]  U. Böckenholt Analysing state dependences in emotional experiences by dynamic count data models , 2003 .

[18]  U. Böckenholt An INAR(1) negative multinomial regression model for longitudinal count data , 1999 .

[19]  Isabel Silva,et al.  Asymptotic distribution of the Yule–Walker estimator for INAR(p) processes , 2006 .

[20]  Gerd Ronning,et al.  Estimation in conditional first order autoregression with discrete support , 2005 .

[21]  J. Franke,et al.  Conditional maximum likelihood estimates for INAR(1) processes and their application to modelling epileptic seizure counts , 1993 .

[22]  P Bélisle,et al.  Change-point analysis of neuron spike train data. , 1998, Biometrics.

[23]  B. Werker,et al.  The asymptotic structure of nearly unstable non-negative integer-valued AR(1) models , 2009, 0906.2080.

[24]  Kurt Brännäs,et al.  GENERALIZED INTEGER-VALUED AUTOREGRESSION , 2001 .

[25]  U. Böckenholt Mixed INAR(1) Poisson regression models: Analyzing heterogeneity and serial dependencies in longitudinal count data , 1998 .

[26]  A. Vaart Efficiency. of infinite dimensional M- estimators , 1995 .

[27]  B. Werker,et al.  Local asymptotic normality and efficient estimation for INAR(p) models , 2006 .

[28]  Maria Eduardo da Silva,et al.  Difference Equations for the Higher‐Order Moments and Cumulants of the INAR(1) Model , 2004 .

[29]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[30]  K. Do,et al.  Efficient and Adaptive Estimation for Semiparametric Models. , 1994 .

[31]  N. Rudholm Entry and the Number of Firms in the Swedish Pharmaceuticals Market , 2001 .

[32]  Bas J. M. Werker,et al.  Adaptive estimation in time-series models , 1997 .

[33]  Jens-Peter Kreiss On Adaptive Estimation in Stationary ARMA Processes , 1987 .

[34]  Peter Neal,et al.  MCMC for Integer‐Valued ARMA processes , 2007 .

[35]  B. McCabe,et al.  Analysis of low count time series data by poisson autoregression , 2004 .

[36]  M Cardinal,et al.  On the application of integer-valued time series models for the analysis of disease incidence. , 1999, Statistics in medicine.

[37]  Mohamed Alosh,et al.  An integer-valued pth-order autoregressive structure (INAR(p)) process , 1990, Journal of Applied Probability.

[38]  Li Yuan,et al.  THE INTEGER‐VALUED AUTOREGRESSIVE (INAR(p)) MODEL , 1991 .

[39]  Gael M. Martin,et al.  Bayesian predictions of low count time series , 2005 .

[40]  B. McCabe,et al.  Asymptotic properties of CLS estimators in the Poisson AR(1) model , 2005 .

[41]  James Pickands,et al.  Estimation for an M/G/∞ queue with incomplete information , 1997 .