Evolution and Coevolution in Mutualistic Networks

A major current challenge in evolutionary biology is to understand how networks of interacting species shape the coevolutionary process. We combined a model for trait evolution with data for twenty plant-animal assemblages to explore coevolution in mutualistic networks. The results revealed three fundamental aspects of coevolution in species-rich mutualisms. First, coevolution shapes species traits throughout mutualistic networks by speeding up the overall rate of evolution. Second, coevolution results in higher trait complementarity in interacting partners and trait convergence in species in the same trophic level. Third, convergence is higher in the presence of super-generalists, which are species that interact with multiple groups of species. We predict that worldwide shifts in the occurrence of super-generalists will alter how coevolution shapes webs of interacting species. Introduced species such as honeybees will favour trait convergence in invaded communities, whereas the loss of large frugivores will lead to increased trait dissimilarity in tropical ecosystems.

[1]  D. Falconer,et al.  Introduction to Quantitative Genetics. , 1962 .

[2]  R. Holt,et al.  Coevolution Drives Temporal Changes in Fitness and Diversity Across Environments in a Bacteria–Bacteriophage Interaction , 2008, Evolution; international journal of organic evolution.

[3]  P. Asprelli,et al.  The Geographic Mosaic of Coevolution , 2006 .

[4]  Luis Santamaría,et al.  Linkage Rules for Plant–Pollinator Networks: Trait Complementarity or Exploitation Barriers? , 2007, PLoS biology.

[5]  P. Raven,et al.  BUTTERFLIES AND PLANTS: A STUDY IN COEVOLUTION , 1964 .

[6]  Mark D. Rausher,et al.  Evolution of Plant Resistance to Multiple Herbivores: Quantifying Diffuse Coevolution , 1997, The American Naturalist.

[7]  P. Ruben,et al.  References and Notes Materials and Methods Text Figs. S1 and S2 Table S1 References Mechanisms of Adaptation in a Predator-prey Arms Race: Ttx-resistant Sodium Channels , 2022 .

[8]  Michel Loreau,et al.  Reconciling empirical ecology with neutral community models. , 2006, Ecology.

[9]  N. T. Wheelwright Fruit size in a tropical tree species: variation, preference by birds, and heritability , 1993, Vegetatio.

[10]  B. J. Borrell Long Tongues and Loose Niches: Evolution of Euglossine Bees and Their Nectar Flowers 1 , 2005 .

[11]  N. Loeuille Influence of evolution on the stability of ecological communities. , 2010, Ecology letters.

[12]  Luciano Cagnolo,et al.  Uniting pattern and process in plant-animal mutualistic networks: a review. , 2009, Annals of botany.

[13]  A. Timmermann,et al.  Pollination networks and functional specialization: a test using Lesser Antillean plant–hummingbird assemblages , 2008 .

[14]  J. Bascompte,et al.  Effects of phenotypic complementarity and phylogeny on the nested structure of mutualistic networks , 2007 .

[15]  Judith L Bronstein,et al.  Eco‐Evolutionary Dynamics of Mutualists and Exploiters , 2009, The American Naturalist.

[16]  Gregory A. Nelson,et al.  Functional Consequences of , 2013 .

[17]  Jeff Ollerton,et al.  The pollination ecology of an assemblage of grassland asclepiads in South Africa. , 2003, Annals of botany.

[18]  Makoto Kato,et al.  Insect-flower Relationship in the Primary Beech Forest of Ashu, Kyoto : An Overview of the Flowering Phenology and the Seasonal Pattern of Insect Visits , 1990 .

[19]  M. Galetti,et al.  Fruit eating by birds in a forest fragment in southeastern Brazil. , 2013 .

[20]  Jane Memmott,et al.  The impact of an alien plant on a native plant-pollinator network: an experimental approach. , 2007, Ecology letters.

[21]  M. Galetti,et al.  The Forgotten Megafauna , 2009, Science.

[22]  M. Groom,et al.  Avian fruit preferences across a Puerto Rican forested landscape: pattern consistency and implications for seed removal , 2002, Oecologia.

[23]  D. Falconer Introduction to quantitative genetics. 1. ed. , 1984 .

[24]  D. W. Snow,et al.  The Feeding Ecology of Tanagers and Honeycreepers in Trinidad , 1971 .

[25]  Neil Hall,et al.  Antagonistic coevolution accelerates molecular evolution , 2010, Nature.

[26]  B. Snow,et al.  Birds and Berries , 1990 .

[27]  D. Schemske,et al.  Flowering Ecology of Some Spring Woodland Herbs , 1978 .

[28]  S. Gandon,et al.  Local adaptation, evolutionary potential and host–parasite coevolution: interactions between migration, mutation, population size and generation time , 2002 .

[29]  Paulo R. Guimarães,et al.  Interaction Intimacy Affects Structure and Coevolutionary Dynamics in Mutualistic Networks , 2007, Current Biology.

[30]  Jordi Bascompte,et al.  Diversity in a complex ecological network with two interaction types , 2009 .

[31]  R. Gomulkiewicz,et al.  Gene flow and geographically structured coevolution , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[32]  A. F. Motten Pollination ecology of the spring wildflower community in the deciduous forests of Piedmont, North Carolina , 1982 .

[33]  N. Pierce Origin of Species , 1914, Nature.

[34]  Juan M Morales,et al.  Invasive Mutualists Erode Native Pollination Webs , 2008, PLoS biology.

[35]  R. Gomulkiewicz,et al.  When Is Correlation Coevolution? , 2010, The American Naturalist.

[36]  P. Jordano,et al.  The Functional Consequences of Mutualistic Network Architecture , 2011, PloS one.

[37]  Fruit size in a tropical tree species: variation, preference by birds, and heritability , 1993 .

[38]  R. Guimerà,et al.  Functional cartography of complex metabolic networks , 2005, Nature.

[39]  R. Gomulkiewicz,et al.  Computing the selection gradient and evolutionary response of an infinite-dimensional trait , 1998 .

[40]  David W. Inouye,et al.  Pollination biology in the Snowy Mountains of Australia: Comparisons with montane Colorado, USA , 1988 .

[41]  S. Barrett,et al.  The reproductive biology of boreal forest herbs. I. Breeding systems and pollination , 1987 .

[42]  Carlos J. Melián,et al.  The nested assembly of plant–animal mutualistic networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Roger Guimerà,et al.  Cartography of complex networks: modules and universal roles , 2005, Journal of statistical mechanics.

[44]  J. Bascompte,et al.  Invariant properties in coevolutionary networks of plant-animal interactions , 2002 .

[45]  Pedro Jordano,et al.  Patterns of Mutualistic Interactions in Pollination and Seed Dispersal: Connectance, Dependence Asymmetries, and Coevolution , 1987, The American Naturalist.

[46]  Jordi Bascompte,et al.  Redes complejas de interacciones planta-animal , 2009 .

[47]  H. G. Baker,et al.  Sugar Composition of Nectars and Fruits Consumed by Birds and Bats in the Tropics and Subtropics 1 , 1998 .

[48]  Jordi Bascompte,et al.  The smallest of all worlds: pollination networks. , 2006, Journal of theoretical biology.

[49]  Michel Loreau,et al.  Eco‐evolutionary dynamics of communities and ecosystems , 2007 .

[50]  Judith L Bronstein,et al.  Mutualisms in a changing world: an evolutionary perspective. , 2010, Ecology letters.

[51]  Jordi Bascompte,et al.  Asymmetric Coevolutionary Networks Facilitate Biodiversity Maintenance , 2006, Science.

[52]  R. Frankham Introduction to quantitative genetics (4th edn): by Douglas S. Falconer and Trudy F.C. Mackay Longman, 1996. £24.99 pbk (xv and 464 pages) ISBN 0582 24302 5 , 1996 .

[53]  S. Johnson,et al.  THE GEOGRAPHICAL MOSAIC OF COEVOLUTION IN A PLANT–POLLINATOR MUTUALISM , 2007, Evolution; international journal of organic evolution.

[54]  Colin Fontaine,et al.  Stability of Ecological Communities and the Architecture of Mutualistic and Trophic Networks , 2010, Science.

[55]  J. Bosch,et al.  A geographic selection mosaic in a generalized plant–pollinator–herbivore system , 2009 .

[56]  C. Fonseca,et al.  Asymmetries, compartments and null interactions in an Amazonian ant-plant community , 1996 .

[57]  Pedro Jordano,et al.  El ciclo anual de los Paseriformes frugívoros en el matorral mediterráneo del sur de España: importancia de su invernada y variaciones interanuales , 1985 .

[58]  T. Parchman,et al.  The Geographic Selection Mosaic for Ponderosa Pine and Crossbills: A Tale of Two Squirrels , 2008, Evolution; international journal of organic evolution.

[59]  P. Jordano Angiosperm Fleshy Fruits and Seed Dispersers: A Comparative Analysis of Adaptation and Constraints in Plant-Animal Interactions , 1995, The American Naturalist.

[60]  Jens M. Olesen,et al.  The structure of a high latitude plant‐flower visitor system: the dominance of flies , 1999 .

[61]  Jordi Bascompte,et al.  Non-random coextinctions in phylogenetically structured mutualistic networks , 2007, Nature.

[62]  Lynn V. Dicks,et al.  Compartmentalization in plant–insect flower visitor webs , 2002 .

[63]  J. Bascompte,et al.  The modularity of pollination networks , 2007, Proceedings of the National Academy of Sciences.

[64]  A. Meyer Repeating Patterns of Mimicry , 2006, PLoS biology.

[65]  S. Otto,et al.  When do host-parasite interactions drive the evolution of non-random mating? , 2008, Ecology letters.

[66]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[67]  J. Thompson,et al.  Geographic structure and dynamics of coevolutionary selection , 2002, Nature.

[68]  R. Gomulkiewicz,et al.  Coevolution in Variable Mutualisms , 2003, The American Naturalist.

[69]  J Memmott,et al.  The structure of a plant-pollinator food web. , 1999, Ecology letters.

[70]  P. Grant,et al.  Heritability of external morphology in Darwin's finches , 1978, Nature.

[71]  I. Côté Evolution and ecology of cleaning symbioses in the sea , 2000 .