Hybrid Biogeography-Based Optimization and Genetic Algorithm for Feature Selection in Mammographic Breast Density Classification

It can be acknowledged from the literature that the high density of breast tissue is a root cause for the escalation of breast cancer among the women, imparting its prime role in Cancer Death among women. Moreover, in this era where computer-aided diagnosis systems have become the right hand of the radiologists, the researchers still find room for improvement in the feature selection techniques. This research aspires to propose hybrid versions of Biogeography-Based Optimization and Genetic Algorithm for feature selection in Breast Density Classification, to get rid of redundant and irrelevant features from the dataset; along with it to achieve the superior classification accuracy or to uphold the same accuracy with lesser number of features. For experimentation, 322 mammogram images from mini-MIAS database are chosen, and then Region of Interests (ROI) of seven different sizes are extracted to extract a set of 45 texture features corresponding to each ROI. Subsequently, the proposed algorithms are used to extract an optimal subset of features from the hefty set of features corresponding to each ROI. The results indicate the outperformance of the proposed algorithms when results were compared with some of the other nature-inspired metaheuristic algorithms using various parameters.