MRD codes with maximum idealizers

Abstract Left and right idealizers are important invariants of linear rank-distance codes. In the case of maximum rank-distance (MRD for short) codes in F q n × n the idealizers have been proved to be isomorphic to finite fields of size at most q n . Up to now, the only known MRD codes with maximum left and right idealizers are generalized Gabidulin codes, which were first constructed in 1978 by Delsarte and later generalized by Kshevetskiy and Gabidulin in 2005. In this paper we classify MRD codes in F q n × n for n ≤ 9 with maximum left and right idealizers and connect them to Moore-type matrices. Apart from generalized Gabidulin codes, it turns out that there is a further family of rank-distance codes providing MRD ones with maximum idealizers for n = 7 , q odd and for n = 8 , q ≡ 1 ( mod 3 ) . These codes are not equivalent to any previously known MRD code. Moreover, we show that this family of rank-distance codes does not provide any further examples for n ≥ 9 .

[1]  Ferruh Özbudak,et al.  Some new non-additive maximum rank distance codes , 2018, Finite Fields Their Appl..

[2]  Rod Gow,et al.  GALOIS EXTENSIONS AND SUBSPACES OF ALTERNATING BILINEAR FORMS WITH SPECIAL RANK PROPERTIES , 2009 .

[3]  Giuseppe Marino,et al.  Maximum scattered linear sets and MRD-codes , 2017, 1701.06831.

[4]  Nicola Durante,et al.  A generalization of the normal rational curve in $$\mathop {\mathrm{PG}}(d,q^n)$$PG(d,qn) and its associated non-linear MRD codes , 2018, Des. Codes Cryptogr..

[5]  Ferruh Özbudak,et al.  Additive Rank Metric Codes , 2017, IEEE Transactions on Information Theory.

[6]  W. Kantor,et al.  Orthogonal dual hyperovals, symplectic spreads, and orthogonal spreads , 2013, 1303.4073.

[7]  Bence Csajbók,et al.  On scattered linear sets of pseudoregulus type in PG(1, qt) , 2016, Finite Fields Their Appl..

[8]  Hiroaki Taniguchi,et al.  A unified description of four simply connected dimensional dual hyperovals , 2014, Eur. J. Comb..

[9]  Yue Zhou,et al.  On the number of inequivalent Gabidulin codes , 2017, Designs, Codes and Cryptography.

[10]  Ron M. Roth,et al.  Author's Reply to Comments on 'Maximum-rank array codes and their application to crisscross error correction' , 1991, IEEE Trans. Inf. Theory.

[11]  M. Moisio,et al.  Kloosterman sums, elliptic curves, and irreducible polynomials with prescribed trace and norm , 2007, 0706.2112.

[12]  Katherine Morrison,et al.  Equivalence for Rank-Metric and Matrix Codes and Automorphism Groups of Gabidulin Codes , 2013, IEEE Transactions on Information Theory.

[13]  Ulrich Dempwolff,et al.  Dimensional dual hyperovals and APN functions with translation groups , 2014 .

[15]  Giuseppe Marino,et al.  A new family of MRD-codes , 2017, Linear Algebra and its Applications.

[16]  Eliakim Hastings Moore A two-fold generalization of Fermat’s theorem , 1896 .

[17]  Giuseppe Marino,et al.  Non-linear maximum rank distance codes , 2016, Des. Codes Cryptogr..

[18]  M. Giulietti,et al.  On the Dickson–Guralnick–Zieve curve , 2018, Journal of Number Theory.

[19]  Rocco Trombetti,et al.  On kernels and nuclei of rank metric codes , 2016, ArXiv.

[20]  Ferdinando Zullo,et al.  Vertex properties of maximum scattered linear sets of PG(1, qn) , 2019, Discret. Math..

[21]  John Sheekey,et al.  New semifields and new MRD codes from skew polynomial rings , 2018, Journal of the London Mathematical Society.

[22]  Alessandro Neri,et al.  On the genericity of maximum rank distance and Gabidulin codes , 2016, Des. Codes Cryptogr..

[23]  John Sheekey,et al.  Rank-metric codes, linear sets, and their duality , 2018, Des. Codes Cryptogr..

[24]  Frank R. Kschischang,et al.  Coding for Errors and Erasures in Random Network Coding , 2008, IEEE Trans. Inf. Theory.

[25]  John Sheekey,et al.  A new family of linear maximum rank distance codes , 2015, Adv. Math. Commun..

[26]  Heeralal Janwa,et al.  Double-Error-Correcting Cyclic Codes and Absolutely Irreducible Polynomials over GF(2) , 1995 .

[27]  Gabriele Nebe,et al.  Automorphism groups of Gabidulin-like codes , 2016, ArXiv.

[28]  Giuseppe Marino,et al.  Classes and equivalence of linear sets in PG(1, qn) , 2016, J. Comb. Theory, Ser. A.

[29]  Rocco Trombetti,et al.  Generalized Twisted Gabidulin Codes , 2015, J. Comb. Theory A.

[30]  Daniele Bartoli,et al.  Asymptotics of Moore exponent sets , 2020, J. Comb. Theory, Ser. A.

[31]  Yue Zhou,et al.  A New Family of MRD Codes in $\mathbb{F_q}^{2n\times2n}$ With Right and Middle Nuclei $\mathbb F_{q^n}$ , 2017, IEEE Transactions on Information Theory.

[32]  Bence Csajbók,et al.  On the equivalence of linear sets , 2015, Des. Codes Cryptogr..

[33]  Nicola Durante,et al.  Non-Linear Maximum Rank Distance Codes in the Cyclic Model for the Field Reduction of Finite Geometries , 2017, Electron. J. Comb..

[34]  Martin Bossert,et al.  Maximum rank distance codes as space-time codes , 2003, IEEE Trans. Inf. Theory.

[35]  Giuseppe Marino,et al.  MRD-codes arising from the trinomial xq+xq3+cxq5⊕Fq6[x] , 2020, Linear Algebra and its Applications.

[36]  Alfred Wassermann,et al.  Algebraic structures of MRD codes , 2015, Adv. Math. Commun..

[37]  Philippe Delsarte,et al.  Bilinear Forms over a Finite Field, with Applications to Coding Theory , 1978, J. Comb. Theory A.

[38]  Daniele Bartoli,et al.  Exceptional scattered polynomials , 2017, Journal of Algebra.

[39]  Giuseppe Marino,et al.  New maximum scattered linear sets of the projective line , 2017, Finite Fields Their Appl..

[40]  Olga Polverino,et al.  Linear sets from projection of Desarguesian spreads , 2021, Finite Fields Their Appl..

[41]  Anna-Lena Horlemann-Trautmann,et al.  New criteria for MRD and Gabidulin codes and some Rank-Metric code constructions , 2015, Adv. Math. Commun..

[42]  Guglielmo Lunardon,et al.  MRD-codes and linear sets , 2017, J. Comb. Theory, Ser. A.