Rapid Microtubule Self-Assembly Kinetics

SUMMARY Microtubule assembly is vital for many fundamental cellular processes. Current models for microtubule assembly kinetics assume that the subunit dissociation rate from a microtubule tip is independent of free subunit concentration. Total-Internal-Reflection-Fluorescence (TIRF) microscopy experiments and data from a laser tweezers assay that measures invitromicrotubuleassemblywithnanometerresolution, provides evidence that the subunit dissociation rate from a microtubule tip increases as the free subunit concentration increases. These data are consistent with a two-dimensional model for microtubule assembly, and are explained by a shift in microtubule tip structure from a relatively blunt shape at low free concentrations to relatively tapered at high free concentrations. We find that because both the association and the dissociation rates increase at higher free subunit concentrations, the kinetics of microtubule assembly are an order-ofmagnitude higher than currently estimated in the literature.

[1]  E D Salmon,et al.  Real-time observations of microtubule dynamic instability in living cells , 1988, The Journal of cell biology.

[2]  S. Fuller,et al.  Structure of growing microtubule ends: two-dimensional sheets close into tubes at variable rates , 1995, The Journal of cell biology.

[3]  Samuel F. Bakhoum,et al.  Genome stability is ensured by temporal control of kinetochore-microtubule dynamics , 2008, Nature Cell Biology.

[4]  Henrik Flyvbjerg,et al.  Modeling elastic properties of microtubule tips and walls , 1998, European Biophysics Journal.

[5]  G. Borisy,et al.  Head-to-tail polymerization of microtubules in vitro. Electron microscope analysis of seeded assembly , 1980, The Journal of cell biology.

[6]  S. Block,et al.  The importance of lattice defects in katanin-mediated microtubule severing in vitro. , 2002, Biophysical journal.

[7]  A. Hyman,et al.  Structural Changes Accompanying Gtp Hydrolysis in Microtubules: Information from a Slowly Hydrolyzable Analogue Guanylyl-(c ,/3)-methylene-diphosphonate , 1995 .

[8]  Y. Engelborghs,et al.  A kinetic analysis of the assembly of microtubules in vitro , 1977, FEBS letters.

[9]  M. Kirschner,et al.  Some thoughts on the partitioning of tubulin between monomer and polymer under conditions of dynamic instability , 1987, Cell Biophysics.

[10]  K. Weber,et al.  Radioimmunoassay for tubulin: a quantitative comparison of the tubulin content of different established tissue culture cells and tissues , 1978, Cell.

[11]  Gary J. Brouhard,et al.  XMAP215 Is a Processive Microtubule Polymerase , 2008, Cell.

[12]  A. Hunt,et al.  Nanometer-resolution microtubule polymerization assays using optical tweezers and microfabricated barriers. , 2010, Methods in cell biology.

[13]  S. Diez,et al.  The kinesin-related protein MCAK is a microtubule depolymerase that forms an ATP-hydrolyzing complex at microtubule ends. , 2003, Molecular cell.

[14]  G. Schubiger,et al.  Cyclin A and B functions in the early Drosophila embryo. , 1999, Development.

[15]  C. Larroque,et al.  The TOGp protein is a new human microtubule-associated protein homologous to the Xenopus XMAP215. , 1998, Journal of cell science.

[16]  D. Odde,et al.  Estimates of lateral and longitudinal bond energies within the microtubule lattice , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[17]  J. G. Skellam The Frequency Distribution of the Difference between Two Poisson Variates Belonging to Different Populations , 1946 .

[18]  A. Kolomeisky,et al.  Simple growth models of rigid multifilament biopolymers. , 2004, The Journal of chemical physics.

[19]  T. L. Hill,et al.  Interference of GTP hydrolysis in the mechanism of microtubule assembly: an experimental study. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[20]  E. Salmon,et al.  Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies , 1988, The Journal of cell biology.

[21]  Anthony A. Hyman,et al.  Structural changes at microtubule ends accompanying GTP hydrolysis: Information from a slowly hydrolyzable analogue of GTP, guanylyl (α,β)methylenediphosphonate , 1998 .

[22]  A. Hyman,et al.  Role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolyzable analogue, GMPCPP. , 1992, Molecular biology of the cell.

[23]  T. L. Hill Effect of fluctuating surface structure and free energy on the growth of linear tubular aggregates. , 1986, Biophysical journal.

[24]  J. Tuszynski,et al.  Microtubule assembly of isotypically purified tubulin and its mixtures. , 2008, Biophysical journal.

[25]  D N Mastronarde,et al.  Three-dimensional ultrastructural analysis of the Saccharomyces cerevisiae mitotic spindle , 1995, The Journal of cell biology.

[26]  M. Jordan,et al.  A kinetic analysis of assembly-disassembly at opposite microtubule ends. , 1982, The Journal of biological chemistry.

[27]  F Metoz,et al.  Lattice defects in microtubules: protofilament numbers vary within individual microtubules , 1992, The Journal of cell biology.

[28]  G. Borisy,et al.  Head-to-tail polymerization of microtubules in vitro. , 1981, Journal of molecular biology.

[29]  P Wadsworth,et al.  Observation and quantification of individual microtubule behavior in vivo: microtubule dynamics are cell-type specific , 1993, The Journal of cell biology.

[30]  G. Borisy,et al.  Quantitative determination of the proportion of microtubule polymer present during the mitosis-interphase transition. , 1994, Journal of cell science.

[31]  Liedewij Laan,et al.  Assembly dynamics of microtubules at molecular resolution , 2006, Nature.

[32]  A. Hyman,et al.  Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau. , 1992, Molecular biology of the cell.

[33]  E. Mandelkow,et al.  Dynamics of microtubules from erythrocyte marginal bands. , 1993, Molecular Biology of the Cell.

[34]  F Oosawa,et al.  Size distribution of protein polymers. , 1970, Journal of theoretical biology.

[35]  D. Compton,et al.  Deviant Kinetochore Microtubule Dynamics Underlie Chromosomal Instability , 2009, Current Biology.

[36]  T. Mitchison,et al.  Microtubule polymerization dynamics. , 1997, Annual review of cell and developmental biology.

[37]  E D Salmon,et al.  Brain microtubule-associated proteins modulate microtubule dynamic instability in vitro. Real-time observations using video microscopy. , 1992, Journal of cell science.

[38]  D. Odde,et al.  Mechanochemical model of microtubule structure and self-assembly kinetics. , 2005, Biophysical journal.

[39]  P. Bayley,et al.  Regulation of microtubule dynamic instability by tubulin-GDP. , 1995, Biochemistry.

[40]  Nasser M. Rusan,et al.  Cell Cycle-Dependent Changes in Microtubule Dynamics in Living Cells Expressing Green Fluorescent Protein-α Tubulin , 2001 .

[41]  Adam Douglass,et al.  Mechanism of Prion Propagation: Amyloid Growth Occurs by Monomer Addition , 2004, PLoS biology.

[42]  Jonathon Howard,et al.  Straight GDP-Tubulin Protofilaments Form in the Presence of Taxol , 2007, Current Biology.

[43]  Jonathon Howard,et al.  Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy. , 2010, Methods in cell biology.

[44]  M. Kirschner,et al.  A microtubule-associated protein from Xenopus eggs that specifically promotes assembly at the plus-end , 1987, The Journal of cell biology.

[45]  T D Pollard,et al.  Rate constants for the reactions of ATP- and ADP-actin with the ends of actin filaments , 1986, The Journal of cell biology.

[46]  E. Salmon,et al.  Effects of magnesium on the dynamic instability of individual microtubules. , 1990, Biochemistry.

[47]  E. Nogales,et al.  Nucleotide-dependent bending flexibility of tubulin regulates microtubule assembly , 2005, Nature.

[48]  H. Erickson,et al.  Kinetics of protein-protein association explained by Brownian dynamics computer simulation. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[49]  David J. Odde,et al.  Microtubule Tip Tracking and Tip Structures at the Nanometer Scale Using Digital Fluorescence Microscopy , 2011, Cellular and molecular bioengineering.

[50]  David J. Odde,et al.  Chromosome Congression by Kinesin-5 Motor-Mediated Disassembly of Longer Kinetochore Microtubules , 2008, Cell.

[51]  A. Hyman,et al.  Microtubule polymerases and depolymerases. , 2007, Current opinion in cell biology.

[52]  G. Borisy,et al.  Role of tubulin-associated proteins in microtubule nucleation and elongation. , 1977, Journal of molecular biology.

[53]  D. Odde,et al.  Microtubule Assembly Dynamics at the Nanoscale , 2007, Current Biology.

[54]  Ronald Wetzel,et al.  Kinetic analysis of beta-amyloid fibril elongation. , 2004, Analytical biochemistry.

[55]  M. Kirschner,et al.  Dynamic instability of microtubule growth , 1984, Nature.

[56]  P Wadsworth,et al.  Cell cycle-dependent changes in microtubule dynamics in living cells expressing green fluorescent protein-alpha tubulin. , 2001, Molecular biology of the cell.

[57]  L. Cassimeris,et al.  XMAP from Xenopus eggs promotes rapid plus end assembly of microtubules and rapid microtubule polymer turnover , 1994, The Journal of cell biology.