The Existence of Quasimeromorphic Mappings in Dimension 3

We prove that a Kleinian group G acting on H3 admits a nonconstant G-automorphic function, even if it has torsion elements, provided that the orders of the elliptic elements are uniformly bounded. This is accomplished by developing a method for meshing distinct fat triangulations which is fatness preserving. We further show how to adapt the proof to higher dimensions.

[1]  V. Mayer Uniformly quasiregular mappings of Lattès type , 1997 .

[2]  R. Heller,et al.  © Macmillan , 1977 .

[3]  H. Piaggio An Introduction to the Geometry of N Dimensions , 1930, Nature.

[4]  S. S. Cairns Polyhedral Approximations to Regular Loci , 1936 .

[5]  L. Potyagailo Finitely generated Kleinian groups in 3-space and 3-manifolds of infinite homotopy type , 1994 .

[6]  John G. Ratcliffe,et al.  Geometry of Discrete Groups , 2019, Foundations of Hyperbolic Manifolds.

[7]  Emil Saucan The Existence of Quasimeromorphic Mappings , 2004 .

[8]  A. W. Reid,et al.  Arithmeticity, Discreteness and Volume , 1995, math/9504208.

[9]  E. M. Hartwell Boston , 1906 .

[10]  W. Thurston,et al.  Three-Dimensional Geometry and Topology, Volume 1 , 1997, The Mathematical Gazette.

[11]  S. S. Cairns,et al.  A simple triangulation method for smooth manifolds , 1961 .

[12]  T. Jørgensen On Discrete Groups of Mobius Transformations , 1976 .

[13]  J. Whitehead On C 1 -Complexes , 1940 .

[14]  Seppo Rickman,et al.  Existence of quasiregular mappings , 1988 .

[15]  J. Morgan,et al.  On Thurston''s uniformization theorem for three-dimensional manifolds , 1984 .

[16]  Brian H. Bowditch,et al.  A 4-dimensional Kleinian group , 1994 .

[17]  S. S. Cairns On the Triangulation of Regular Loci , 1934 .

[18]  Gaven Martin,et al.  Commutators, collars and the geometry of Möbius groups , 1994 .

[19]  Mark Feighn,et al.  Conjugacy Classes of Finite Subgroups of Kleinian Groups , 1991 .

[20]  O. Martio,et al.  Automorphic quasimeromorphic mappings inRn , 1975 .

[21]  J. Munkres,et al.  Elementary Differential Topology. , 1967 .

[22]  Geometrical finiteness for hyperbolic orbifolds , 1998 .

[23]  J. Ratcliffe Foundations of Hyperbolic Manifolds , 2019, Graduate Texts in Mathematics.

[24]  M. Kapovich,et al.  On the absence of the Ahlfors and Sullivan theorems for Kleinian groups in higher dimensions , 1991 .

[25]  Robert Schrader,et al.  On the curvature of piecewise flat spaces , 1984 .

[26]  A. Beardon The Geometry of Discrete Groups , 1995 .

[27]  W. Abikoff,et al.  Nondiscrete Groups of Hyperbolic Motions , 1990 .

[28]  R. Brooks,et al.  Collars in Kleinian groups , 1982 .

[29]  M. Spivak A comprehensive introduction to differential geometry , 1979 .

[30]  J. Hudson Piecewise linear topology , 1966 .

[31]  M. Kapovich,et al.  On the absence of Ahlfors' finiteness theorem for Kleinian groups in dimension three , 1991 .

[32]  É. Ghys,et al.  Sur Les Groupes Hyperboliques D'Apres Mikhael Gromov , 1990 .

[33]  W. Thurston,et al.  Three-Dimensional Geometry and Topology, Volume 1 , 1997, The Mathematical Gazette.

[34]  Emil Saucan Note on a Theorem of Munkres , 2004 .