Waste Heat Recovery Enhancement in the Co2 Chemical Absorption Process by Hydrophobic-Hydrophilic Composite Ceramic Membranes

[1]  Y. Shang,et al.  CO2 regeneration energy requirement of carbon capture process with an enhanced waste heat recovery from stripped gas by advanced transport membrane condenser , 2022, Applied Energy.

[2]  Di Wu,et al.  Performance study of Transport membrane condenser using condensate water to recover water and heat from flue gas , 2022, Journal of Cleaner Production.

[3]  J. Chong,et al.  Hydrophobic Ceramic Membranes Fabricated Via Fatty Acid Chloride Modification for Solvent Resistant Membrane Distillation (Sr-Md) , 2022, SSRN Electronic Journal.

[4]  S. Yan,et al.  Hydrophobic–Hydrophilic Janus Ceramic Membrane for Enhancing the Waste Heat Recovery from the Stripped Gas in the Carbon Capture Process , 2022, ACS Sustainable Chemistry & Engineering.

[5]  Chi-Chuan Wang,et al.  Moist air condensation heat transfer enhancement via superhydrophobicity , 2022, International Journal of Heat and Mass Transfer.

[6]  Sheng Li,et al.  Analysis and evaluation of the energy saving potential of the CO2 chemical absorption process , 2021, International Journal of Greenhouse Gas Control.

[7]  G. Blanford,et al.  Impact of carbon dioxide removal technologies on deep decarbonization of the electric power sector , 2021, Nature Communications.

[8]  K. Ru,et al.  Simulation of water recovery in membrane condenser dehumidification process , 2021, Applied Thermal Engineering.

[9]  H. Qi,et al.  Improving heat transfer and water recovery performance in high‐moisture flue gas condensation using silicon carbide membranes , 2021, International Journal of Energy Research.

[10]  Liqiang Xu,et al.  Techno-economic assessment of waste heat recovery enhancement using multi-channel ceramic membrane in carbon capture process , 2020, Chemical Engineering Journal.

[11]  Long Ji,et al.  CO2 capture cost saving through waste heat recovery using transport membrane condenser in different solvent-based carbon capture processes , 2020 .

[12]  I. Burgert,et al.  Janus wood membranes for autonomous water transport and fog collection , 2020, Journal of Materials Chemistry A.

[13]  L. Winnubst,et al.  Hybrid ceramic membranes for organic solvent nanofiltration: State-of-the-art and challenges , 2020, Journal of Membrane Science.

[14]  Qingyao He,et al.  Modification of rich-split carbon capture process using ceramic membrane for reducing the reboiler duty: Effect of membrane arrangements , 2020 .

[15]  Liqiang Xu,et al.  Waste heat recovery from the stripped gas in carbon capture process by membrane technology: Hydrophobic and hydrophilic organic membrane cases , 2020 .

[16]  Huiting Shan,et al.  Surface hydrophobicity based heat and mass transfer mechanism in membrane distillation , 2019, Journal of Membrane Science.

[17]  P. Feron,et al.  Membrane heat exchanger for novel heat recovery in carbon capture , 2019, Journal of Membrane Science.

[18]  Liqiang Xu,et al.  Reducing CO2 regeneration heat requirement through waste heat recovery from hot stripping gas using nanoporous ceramic membrane , 2019, International Journal of Greenhouse Gas Control.

[19]  Deli Li,et al.  Experimental study on flue gas condensate capture and heat transfer in staggered tube bundle heat exchangers , 2018, Applied Thermal Engineering.

[20]  Cheng-Xian Lin,et al.  Modeling and simulation of cross-flow transport membrane condenser heat exchangers , 2018, International Communications in Heat and Mass Transfer.

[21]  Chun-xi Li,et al.  Superhydrophobic modification of ceramic membranes for vacuum membrane distillation , 2017 .

[22]  L. An,et al.  Effect of mass transfer on heat transfer of microporous ceramic membranes for water recovery , 2017 .

[23]  A. Badea,et al.  CO2 Capture from Syngas Generated by a Biomass Gasification Power Plant with Chemical Absorption Process , 2017 .

[24]  D. J. Preston,et al.  Nanoengineered materials for liquid–vapour phase-change heat transfer , 2017 .

[25]  Y. Liao,et al.  A simple coating method to prepare superhydrophobic layers on ceramic alumina for vacuum membrane distillation , 2016, Separation and Purification Technology.

[26]  J. Park,et al.  Effect of hydrophobic modification on carbon dioxide absorption using porous alumina (Al2O3) hollow fiber membrane contactor , 2016 .

[27]  T. Keener,et al.  A review: Desorption of CO2 from rich solutions in chemical absorption processes , 2016 .

[28]  Moses O. Tadé,et al.  Systematic study of aqueous monoethanolamine (MEA)-based CO2 capture process: Techno-economic assessment of the MEA process and its improvements , 2016 .

[29]  T. He,et al.  Effective evaporation of CF4 plasma modified PVDF membranes in direct contact membrane distillation , 2015 .

[30]  Cheng-Xian Lin,et al.  Nanoporous Membrane Tube Condensing Heat Transfer Enhancement Study , 2015 .

[31]  N. A. Ahmad,et al.  Membranes with Great Hydrophobicity: A Review on Preparation and Characterization , 2015 .

[32]  Rong Wang,et al.  Surface modification of PVDF hollow fiber membrane to enhance hydrophobicity using organosilanes , 2013 .

[33]  Cheng-Xian Lin,et al.  Numerical modeling and simulation of condensation heat transfer of a flue gas in a bundle of transport membrane tubes , 2013 .

[34]  Ashleigh Cousins,et al.  Model verification and evaluation of the rich‐split process modification at an Australian‐based post combustion CO 2 capture pilot plant , 2012 .

[35]  Laura A. Pellegrini,et al.  Energy saving in a CO2 capture plant by MEA scrubbing , 2011 .

[36]  Lixin Song,et al.  FAS grafted superhydrophobic ceramic membrane , 2009 .

[37]  K. Kim,et al.  An experimental and theoretical study on the concept of dropwise condensation , 2006 .

[38]  Pedro Prádanos,et al.  Estimation of vapor transfer coefficient of hydrophobic porous membranes for applications in membrane distillation , 2003 .

[39]  Mohamed Khayet,et al.  Thermal boundary layers in sweeping gas membrane distillation processes , 2002 .

[40]  Pedro Prádanos,et al.  Characterisation of three hydrophobic porous membranes used in membrane distillation , 2002 .

[41]  马学虎,et al.  Filmwise Condensation Heat Transfer Enhancement with Dropwise and Filmwise Coexisting Condensation Surfaces , 1998 .

[42]  Ralph H. Weiland,et al.  Heat Capacity of Aqueous Monoethanolamine, Diethanolamine, N-Methyldiethanolamine, and N-Methyldiethanolamine-Based Blends with Carbon Dioxide , 1997 .

[43]  P. J. Marto,et al.  The Use of Organic Coatings to Promote Dropwise Condensation of Steam , 1987 .

[44]  R. Hannemann Condensing surface thickness effects in dropwise condensation , 1978 .