Introducing the Separability Matrix for Error Correcting Output Codes Coding

Error Correcting Output Codes (ECOC) have demonstrate to be a powerful tool for treating multi-class problems. Nevertheless, predefined ECOC designs may not benefit from Error-correcting principles for particular multi-class data. In this paper, we introduce the Separability matrix as a tool to study and enhance designs for ECOC coding. In addition, a novel problem-dependent coding design based on the Separability matrix is tested over a wide set of challenging multi-class problems, obtaining very satisfactory results.

[1]  Thomas G. Dietterich,et al.  Solving Multiclass Learning Problems via Error-Correcting Output Codes , 1994, J. Artif. Intell. Res..

[2]  Thomas G. Dietterich,et al.  Error-Correcting Output Coding Corrects Bias and Variance , 1995, ICML.

[3]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[4]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[5]  Nicolás García-Pedrajas,et al.  Improving multiclass pattern recognition by the combination of two strategies , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Sergio Escalera,et al.  Sub-class Error-Correcting Output Codes , 2008, ICVS.

[7]  A. Martínez,et al.  The AR face databasae , 1998 .

[8]  André Carlos Ponce de Leon Ferreira de Carvalho,et al.  Evolutionary tuning of SVM parameter values in multiclass problems , 2008, Neurocomputing.

[9]  Jordi Vitrià,et al.  Discriminant ECOC: a heuristic method for application dependent design of error correcting output codes , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Koby Crammer,et al.  On the Learnability and Design of Output Codes for Multiclass Problems , 2002, Machine Learning.

[11]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[12]  Ryan M. Rifkin,et al.  In Defense of One-Vs-All Classification , 2004, J. Mach. Learn. Res..

[13]  Jordi Vitrià,et al.  Traffic Sign Recognition Using Evolutionary Adaboost Detection and Forest-ECOC Classification , 2009, IEEE Transactions on Intelligent Transportation Systems.

[14]  Aleix M. Martinez,et al.  The AR face database , 1998 .

[15]  Robert Tibshirani,et al.  Classification by Pairwise Coupling , 1997, NIPS.

[16]  Yoram Singer,et al.  Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers , 2000, J. Mach. Learn. Res..

[17]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.

[18]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..