A New Heuristic Approach for Large Size Zero-One Multi Knapsack Problem Using Intercept Matrix
暂无分享,去创建一个
[1] F. Glover. A Multiphase-Dual Algorithm for the Zero-One Integer Programming Problem , 1965 .
[2] John E. Beasley,et al. OR-Library: Distributing Test Problems by Electronic Mail , 1990 .
[3] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[4] Gautam Mitra,et al. Analysis of mathematical programming problems prior to applying the simplex algorithm , 1975, Math. Program..
[5] Thomas Bäck,et al. The zero/one multiple knapsack problem and genetic algorithms , 1994, SAC '94.
[6] Fred W. Glover,et al. Cutting and Surrogate Constraint Analysis for Improved Multidimensional Knapsack Solutions , 2002, Ann. Oper. Res..
[7] O.B.G. Madsen. Redundancy in mathematical programming: A state-of-the-art survey: Volume 206 in: Lecture Notes in Economics and Mathematical Systems, Springer, Berlin, 1983, vii + 286 pages, DM44.00 , 1984 .
[8] F. Glover. HEURISTICS FOR INTEGER PROGRAMMING USING SURROGATE CONSTRAINTS , 1977 .
[9] Wei Shih,et al. A Branch and Bound Method for the Multiconstraint Zero-One Knapsack Problem , 1979 .
[10] C. Chellappan,et al. A heuristic approach for identification of redundant constraints in linear programming models , 2006, Int. J. Comput. Math..
[11] M. Karwan,et al. Redundancy in mathematical programming : a state-of-the-art survey , 1983 .
[12] Andreas Drexl,et al. A simulated annealing approach to the multiconstraint zero-one knapsack problem , 1988, Computing.
[13] T. H. Mattheiss,et al. An Algorithm for Determining Irrelevant Constraints and all Vertices in Systems of Linear Inequalities , 1973, Oper. Res..
[14] E. Balas,et al. Pivot and Complement–A Heuristic for 0-1 Programming , 1980 .
[15] E. Balas. An Additive Algorithm for Solving Linear Programs with Zero-One Variables , 1965 .
[16] J. S. Welch,et al. Finding duplicate rows in a linear programming model , 1986 .
[17] Uwe H. Suhl,et al. Advanced preprocessing techniques for linear and quadratic programming , 2003, OR Spectr..
[18] Hasan Pirkul,et al. A heuristic solution procedure for the multiconstraint zero‐one knapsack problem , 1987 .
[19] J. Gondzio,et al. Presolove Analysis of Linear Programs Prior to Applying an Interior Point Method , 1997, INFORMS J. Comput..
[20] Fred Glover,et al. Critical Event Tabu Search for Multidimensional Knapsack Problems , 1996 .
[21] A Volgenant,et al. An Improved Heuristic for Multidimensional 0-1 Knapsack Problems , 1990 .
[22] J. Telgen. Identifying Redundant Constraints and Implicit Equalities in Systems of Linear Constraints , 1983 .
[23] A. Victor Cabot,et al. An Enumeration Algorithm for Knapsack Problems , 1970, Oper. Res..
[24] Predrag S. Stanimirovic,et al. Two Direct Methods in Linear Programming , 2001, Eur. J. Oper. Res..
[25] Ralph E. Gomory,et al. The Theory and Computation of Knapsack Functions , 1966, Oper. Res..
[26] Paolo Toth,et al. Knapsack Problems: Algorithms and Computer Implementations , 1990 .
[27] Saïd Hanafi,et al. An efficient tabu search approach for the 0-1 multidimensional knapsack problem , 1998, Eur. J. Oper. Res..
[28] Osman Oguz,et al. A heuristic algorithm for the multidimensional zero-one knapsack problem , 1984 .
[29] Arnaud Fréville,et al. The multidimensional 0-1 knapsack problem: An overview , 2004, Eur. J. Oper. Res..
[30] Ilya Ioslovich. Robust Reduction of a Class of Large-Scale Linear Programs , 2001, SIAM J. Optim..
[31] John E. Beasley,et al. A Genetic Algorithm for the Multidimensional Knapsack Problem , 1998, J. Heuristics.
[32] H. Martin Weingartner,et al. Methods for the Solution of the Multidimensional 0/1 Knapsack Problem , 1967, Operational Research.