A New Heuristic Approach for Large Size Zero-One Multi Knapsack Problem Using Intercept Matrix

This paper presents a heuristic to solve large size 0-1 Multi constrained Knapsack problem (01MKP) which is NP-hard. Many researchers are used heuristic operator to identify the redundant constraints of Linear Programming Problem before applying the regular procedure to solve it. We use the intercept matrix to identify the zero valued variables of 01MKP which is known as redundant variables. In this heuristic, first the dominance property of the intercept matrix of constraints is exploited to reduce the search space to find the optimal or near optimal solutions of 01MKP, second, we improve the solution by using the pseudo-utility ratio based on surrogate constraint of 01MKP. This heuristic is tested for benchmark problems of sizes upto 2500, taken from literature and the results are compared with optimum solutions. Space and computational complexity of solving 01MKP using this approach are also presented. The encouraging results especially for relatively large size test problems indicate that this heuristic can successfully be used for finding good solutions for highly constrained NP-hard problems. Keywords—0-1 Multi constrained Knapsack problem, heuristic, computational complexity, NP-Hard problems.

[1]  F. Glover A Multiphase-Dual Algorithm for the Zero-One Integer Programming Problem , 1965 .

[2]  John E. Beasley,et al.  OR-Library: Distributing Test Problems by Electronic Mail , 1990 .

[3]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[4]  Gautam Mitra,et al.  Analysis of mathematical programming problems prior to applying the simplex algorithm , 1975, Math. Program..

[5]  Thomas Bäck,et al.  The zero/one multiple knapsack problem and genetic algorithms , 1994, SAC '94.

[6]  Fred W. Glover,et al.  Cutting and Surrogate Constraint Analysis for Improved Multidimensional Knapsack Solutions , 2002, Ann. Oper. Res..

[7]  O.B.G. Madsen Redundancy in mathematical programming: A state-of-the-art survey: Volume 206 in: Lecture Notes in Economics and Mathematical Systems, Springer, Berlin, 1983, vii + 286 pages, DM44.00 , 1984 .

[8]  F. Glover HEURISTICS FOR INTEGER PROGRAMMING USING SURROGATE CONSTRAINTS , 1977 .

[9]  Wei Shih,et al.  A Branch and Bound Method for the Multiconstraint Zero-One Knapsack Problem , 1979 .

[10]  C. Chellappan,et al.  A heuristic approach for identification of redundant constraints in linear programming models , 2006, Int. J. Comput. Math..

[11]  M. Karwan,et al.  Redundancy in mathematical programming : a state-of-the-art survey , 1983 .

[12]  Andreas Drexl,et al.  A simulated annealing approach to the multiconstraint zero-one knapsack problem , 1988, Computing.

[13]  T. H. Mattheiss,et al.  An Algorithm for Determining Irrelevant Constraints and all Vertices in Systems of Linear Inequalities , 1973, Oper. Res..

[14]  E. Balas,et al.  Pivot and Complement–A Heuristic for 0-1 Programming , 1980 .

[15]  E. Balas An Additive Algorithm for Solving Linear Programs with Zero-One Variables , 1965 .

[16]  J. S. Welch,et al.  Finding duplicate rows in a linear programming model , 1986 .

[17]  Uwe H. Suhl,et al.  Advanced preprocessing techniques for linear and quadratic programming , 2003, OR Spectr..

[18]  Hasan Pirkul,et al.  A heuristic solution procedure for the multiconstraint zero‐one knapsack problem , 1987 .

[19]  J. Gondzio,et al.  Presolove Analysis of Linear Programs Prior to Applying an Interior Point Method , 1997, INFORMS J. Comput..

[20]  Fred Glover,et al.  Critical Event Tabu Search for Multidimensional Knapsack Problems , 1996 .

[21]  A Volgenant,et al.  An Improved Heuristic for Multidimensional 0-1 Knapsack Problems , 1990 .

[22]  J. Telgen Identifying Redundant Constraints and Implicit Equalities in Systems of Linear Constraints , 1983 .

[23]  A. Victor Cabot,et al.  An Enumeration Algorithm for Knapsack Problems , 1970, Oper. Res..

[24]  Predrag S. Stanimirovic,et al.  Two Direct Methods in Linear Programming , 2001, Eur. J. Oper. Res..

[25]  Ralph E. Gomory,et al.  The Theory and Computation of Knapsack Functions , 1966, Oper. Res..

[26]  Paolo Toth,et al.  Knapsack Problems: Algorithms and Computer Implementations , 1990 .

[27]  Saïd Hanafi,et al.  An efficient tabu search approach for the 0-1 multidimensional knapsack problem , 1998, Eur. J. Oper. Res..

[28]  Osman Oguz,et al.  A heuristic algorithm for the multidimensional zero-one knapsack problem , 1984 .

[29]  Arnaud Fréville,et al.  The multidimensional 0-1 knapsack problem: An overview , 2004, Eur. J. Oper. Res..

[30]  Ilya Ioslovich Robust Reduction of a Class of Large-Scale Linear Programs , 2001, SIAM J. Optim..

[31]  John E. Beasley,et al.  A Genetic Algorithm for the Multidimensional Knapsack Problem , 1998, J. Heuristics.

[32]  H. Martin Weingartner,et al.  Methods for the Solution of the Multidimensional 0/1 Knapsack Problem , 1967, Operational Research.