Separability of Real Normed Spaces and Its Basic Properties

Summary In this article, the separability of real normed spaces and its properties are mainly formalized. In the first section, it is proved that a real normed subspace is separable if it is generated by a countable subset. We used here the fact that the rational numbers form a dense subset of the real numbers. In the second section, the basic properties of the separable normed spaces are discussed. It is applied to isomorphic spaces via bounded linear operators and double dual spaces. In the last section, it is proved that the completeness and reflexivity are transferred to sublinear normed spaces. The formalization is based on [34], and also referred to [7], [14] and [16].

[1]  Kenneth Halpern August The Cardinal Numbers , 1888, Nature.

[2]  F. Smithies Linear Operators , 2019, Nature.

[3]  L. B. Rall,et al.  Elements of the Theory of Functions and Functional Analysis vol. I (A. N. Kolmogorov and S. V. Fomin); Metric and Normed Spaces vol. II (L. F. Boron, trans.); Measure—The Lebesgue Integral Hilbert Space (H. Kamel and H. Komm) , 1962 .

[4]  W. Kellaway,et al.  Complex Numbers , 2019, AMS/MAA Textbooks.

[5]  P. Davis,et al.  Elements of the theory of functions , 1968 .

[6]  B. T. Poljak,et al.  Hahn-Banach Theorem , 1972 .

[7]  N. Bourbaki,et al.  Topological Vector Spaces: Chapters 1–5 , 1987 .

[8]  N. Bourbaki Topological Vector Spaces , 1987 .

[9]  Wojciech A. Trybulec Basis of Real Linear Space , 1990 .

[10]  A. Kondracki Basic Properties of Rational Numbers , 1990 .

[11]  G. Bancerek The Fundamental Properties of Natural Numbers , 1990 .

[12]  Agata Darmochwa,et al.  Topological Spaces and Continuous Functions , 1990 .

[13]  Wojciech A. Trybulec Linear Combinations in Real Linear Space , 1990 .

[14]  A. Trybulec Domains and Their Cartesian Products , 1990 .

[15]  G. Bancerek Konig's Theorem , 1990 .

[16]  Edmund Woronowicz Relations Defined on Sets , 1990 .

[17]  Wojciech A. Trybulec Subspaces and Cosets of Subspaces in Real Linear Space , 1990 .

[18]  G. Bancerek,et al.  Ordinal Numbers , 2003 .

[19]  Wojciech A. Trybulec Vectors in Real Linear Space , 1990 .

[20]  Eugeniusz Kusak Abelian Groups, Fields and Vector Spaces 1 , 1990 .

[21]  J. Popiołek Real Normed Space , 1991 .

[22]  Hahn-Banach Theorem , 1993 .

[23]  Y. Shidama Banach Space of Bounded Linear Operators , 2003 .

[24]  Czeslaw Bylinski Functions and Their Basic Properties , 2004 .

[25]  Białystok,et al.  Ring Ideals , 2004 .

[26]  Czeslaw Bylinski Functions from a Set to a Set , 2004 .

[27]  Czeslaw Bylinski Some Basic Properties of Sets , 2004 .

[28]  Edmund Woronowicz Relations and Their Basic Properties , 2004 .

[29]  Y. Shidama,et al.  Baire's Category Theorem and Some Spaces Generated from Real Normed Space1 , 2006 .

[30]  Yasunari Shidama,et al.  Bidual Spaces and Reflexivity of Real Normed Spaces , 2014, Formaliz. Math..

[31]  Yuichi Futa,et al.  Topological Properties of Real Normed Space , 2014, Formaliz. Math..

[32]  Yasunari Shidama,et al.  Dual Spaces and Hahn-Banach Theorem , 2014, Formaliz. Math..

[33]  P. Rosenthal,et al.  The Complex Numbers , 2014 .

[34]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .