Robust Estimation in Linear Model and its Computational Aspects
暂无分享,去创建一个
[1] F. Hampel. The Influence Curve and Its Role in Robust Estimation , 1974 .
[2] S. Stigler. Do Robust Estimators Work with Real Data , 1977 .
[3] Hendrik P. Lopuhaä. Estimation of location and covariance with high breakdown point , 1990 .
[4] T. P. Hettmansperger,et al. Statistical Inference Based on Ranks. , 1985 .
[5] Jan Ámos Vísek. Adaptive estimation in linear regression model. II. Asymptotic normality , 1992, Kybernetika.
[6] Edward L. Frome,et al. A revised simplex algorithm for the absolute deviation curve fitting problem , 1979 .
[7] R. Serfling. Approximation Theorems of Mathematical Statistics , 1980 .
[8] Ricardo Fraiman,et al. Qualitative Robustness for Stochastic Processes , 1987 .
[9] Subhash C. NarulaI,et al. The Minimum Sum of Absolute Errors Regression: A State of the Art Survey , 1982 .
[10] Roger Koenker,et al. Tests of Linear Hypotheses and l[subscript]1 Estimation , 1982 .
[11] Virginia Ann Johnson,et al. State-of-the-art Survey , 2022 .
[12] G WERNER,et al. The measurement of uncertainty , 1961, Clinical pharmacology and therapeutics.
[13] M. Johns,et al. Robust Pitman-like Estimators , 1979 .
[14] Muni S. Srivastava,et al. Regression Analysis: Theory, Methods, and Applications , 1991 .
[15] R. Koenker,et al. Asymptotic Theory of Least Absolute Error Regression , 1978 .
[16] D. Ruppert,et al. Transformation and Weighting in Regression , 1988 .
[17] P. Bickel,et al. On Some Analogues to Linear Combinations of Order Statistics in the Linear Model , 1973 .
[18] P. Rousseeuw. Least Median of Squares Regression , 1984 .
[19] Jana Jurečková. Tail-Behavior of Location Estimators , 1981 .
[20] C. J. Lawrence. Robust estimates of location : survey and advances , 1975 .
[21] Frederick Mosteller,et al. Understanding robust and exploratory data analysis , 1983 .
[22] P. J. Huber. Robust Estimation of a Location Parameter , 1964 .
[23] S. Weisberg. Plots, transformations, and regression , 1985 .
[24] J. Antoch. Behaviour of L-Estimators of Location from the Point of View of Large Deviations , 1984 .
[25] I. Barrodale,et al. An Improved Algorithm for Discrete $l_1 $ Linear Approximation , 1973 .
[26] W. Steiger,et al. Least Absolute Deviations: Theory, Applications and Algorithms , 1984 .
[27] P. Révész,et al. Strong approximations in probability and statistics , 1981 .
[28] R. Koenker,et al. Computing regression quantiles , 1987 .
[29] Moti Lal Tiku,et al. Robust Inference , 1986 .
[30] Minimizing the sum of absolute deviations , 1978 .
[31] D. F. Andrews,et al. Finding the Outliers that Matter , 1978 .
[32] Peter J. Rousseeuw,et al. Robust regression and outlier detection , 1987 .
[33] Computational aspects of adaptive combination of least squares and least absolute deviations estimators , 1991 .
[34] Vic Barnett,et al. Outliers in Statistical Data , 1980 .
[35] R. Maronna. Robust $M$-Estimators of Multivariate Location and Scatter , 1976 .
[36] H. Ekblom. A new algorithm for the huber estimator in linear models , 1988 .
[37] C. Stein. Efficient Nonparametric Testing and Estimation , 1956 .
[38] I. Barrodale,et al. Algorithms for restricted least absolute value estimation , 1977 .
[39] R. Wolke,et al. Iteratively Reweighted Least Squares: Algorithms, Convergence Analysis, and Numerical Comparisons , 1988 .
[40] P. J. Huber. The behavior of maximum likelihood estimates under nonstandard conditions , 1967 .
[41] Thomas P. Hettmansperger,et al. Statistical inference based on ranks , 1985 .
[42] Jana Jurečková,et al. On adaptive scale-equivariant m-estimators in linear models , 1982 .
[43] W. R. van Zwet,et al. VAN DE HULST ON ROBUST STATISTICS: A HISTORICAL NOTE , 1985 .
[44] S. Weisberg,et al. Residuals and Influence in Regression , 1982 .
[45] U. Peters,et al. Up- and down-dating procedures for linearL1 regression , 1983 .
[46] Jana Jurecková,et al. Regression quantiles and trimmed least squares estimator under a general design , 1984, Kybernetika.
[47] D. F. Andrews,et al. Robust Estimates of Location , 1972 .
[48] J. Antoch,et al. Algoritmic Development in Variable Selection Procedures , 1986 .
[49] Michael R. Greenberg,et al. Chapter 1 – Theory, Methods, and Applications , 1978 .
[50] P. J. Huber. Minimax Aspects of Bounded-Influence Regression , 1983 .
[51] V. Yohai. HIGH BREAKDOWN-POINT AND HIGH EFFICIENCY ROBUST ESTIMATES FOR REGRESSION , 1987 .
[52] Roger Koenker,et al. An Empirical Quantile Function for Linear Models with | operatornameiid Errors , 1982 .
[53] Ralf Wolke. Iteratively reweighted least squares: A comparison of several single step algorithms for linear models , 1992 .
[54] P. Bickel. One-Step Huber Estimates in the Linear Model , 1975 .
[55] Jan Ámos Vísek. Efficiency rate and local deficiency of the most powerful tests in the model of contaminacy with general neighbourhoods , 1987, Kybernetika.
[56] P. J. Huber. Robust Statistical Procedures , 1977 .
[57] R. Beran. An Efficient and Robust Adaptive Estimator of Location , 1978 .
[58] Nabih N. Abdelmalek,et al. On the discrete linear L1 approximation and L1 solutions of overdetermined linear equations , 1974 .
[59] Y. Dodge. on Statistical data analysis based on the L1-norm and related methods , 1987 .
[60] P. Hennequin,et al. Quelques Aspects De La Statistique Robuste , 1981 .
[61] P. J. Huber,et al. Minimax Tests and the Neyman-Pearson Lemma for Capacities , 1973 .
[62] Harold Davenport,et al. A Historical Note , 1947 .
[63] Kaj Madsen,et al. Algorithms for non-linear huber estimation , 1989 .
[64] Jan Ámos Vísek. Estimation of contamination level in model of contaminacy with general neighbourhoods , 1989, Kybernetika.
[65] Alfio Marazzi,et al. Probabilistic algorithms for least median of squares regression , 1989 .
[66] Flexible L-estimation in the linear model , 1991 .
[67] W. Rey. Introduction to Robust and Quasi-Robust Statistical Methods , 1983 .
[68] D. Ruppert,et al. Trimmed Least Squares Estimation in the Linear Model , 1980 .
[69] S. Chatterjee. Sensitivity analysis in linear regression , 1988 .
[70] R. Fisher,et al. On the Mathematical Foundations of Theoretical Statistics , 1922 .
[71] V. Yohai,et al. Influence Functionals for Time Series , 1986 .
[72] Roy E. Welsch,et al. Efficient Computing of Regression Diagnostics , 1981 .
[73] I. Vajda. Theory of statistical inference and information , 1989 .
[74] S. Stigler. Simon Newcomb, Percy Daniell, and the History of Robust Estimation 1885–1920 , 1972 .
[75] V. Yohai,et al. Asymptotic behavior of general M-estimates for regression and scale with random carriers , 1981 .
[76] Werner A. Stahel,et al. Robust Statistics: The Approach Based on Influence Functions , 1987 .
[77] F. Hampel. A General Qualitative Definition of Robustness , 1971 .
[78] N. Draper,et al. Applied Regression Analysis , 1966 .
[79] P. J. Huber,et al. Numerical methods for the nonlinear robust regression problem , 1981 .
[80] J. Collins. Robust Estimation of a Location Parameter in the Presence of Asymmetry , 1976 .
[81] Subhash C. Narula,et al. The Minimum Sum of Absolute Errors Regression , 1987 .
[82] Z. Šidák. Rectangular Confidence Regions for the Means of Multivariate Normal Distributions , 1967 .
[83] Xuming He. TAIL BEHAVIOR OF REGRESSION ESTIMATORS AND THEIR BREAKDOWN POINTS , 1990 .
[84] S. Stigler. Gauss and the Invention of Least Squares , 1981 .
[85] Elvezio Ronchetti,et al. Small Sample Asymptotics , 1990 .
[86] Roy E. Welsch,et al. Computational Procedures for Bounded-Influence Regression , 1982 .
[87] A. Siegel. Robust regression using repeated medians , 1982 .
[88] W. W. Muir,et al. Regression Diagnostics: Identifying Influential Data and Sources of Collinearity , 1980 .
[89] École d'été de probabilités de Saint-Flour,et al. Ecole d'été de probabilités de Saint-Flour IX-1979 , 1981 .
[90] P. J. Huber. Minimax Aspects of Bounded-Influence Regression: Rejoinder , 1983 .
[91] Jana Jurečková,et al. Asymptotics for one-step m-estimators in regression with application to combining efficiency and high breakdown point , 1987 .