On Extensions of Embeddings into the Enumeration Degrees of the -Sets

We give an algorithm for deciding whether an embedding of a finite partial order into the enumeration degrees of the -sets can always be extended to an embedding of a finite partial order .

[1]  Alistair H. Lachlan,et al.  Then-rea enumeration degrees are dense , 1992, Arch. Math. Log..

[2]  Kevin McEvoy,et al.  On minimal pairs of enumeration degrees , 1985, Journal of Symbolic Logic.

[3]  Robert I. Soare,et al.  Extension of embeddings in the computably enumerable degrees , 2001 .

[4]  Julia F. Knight,et al.  Generic Copies of Countable Structures , 1989, Ann. Pure Appl. Log..

[5]  Rod Downey Notes on the O‴ priority method with special attention to density results , 1990 .

[6]  S. Barry Cooper,et al.  Partial degrees and the density problem. Part 2: The enumeration degrees of the Σ2 sets are dense , 1984, Journal of Symbolic Logic.

[7]  Graham Higman,et al.  Existentially Closed Groups , 1988 .

[8]  Alistair H. Lachlan,et al.  Some Special Pairs Of Σ2 e-Degrees , 1998, Math. Log. Q..

[9]  Theodore A. Slaman,et al.  Definability in the enumeration degrees , 1997, Arch. Math. Log..

[10]  Manuel Lerman,et al.  Decidability and invariant classes for degree structures , 1988 .

[11]  Richard A. Shore,et al.  Embeddings and extensions of embeddings in the r.e. tt and wtt-degrees , 1985 .

[12]  S. K. Thomason Sublattices of the Recursively Enumerable Degrees , 1971 .

[13]  Finite volume flows and Morse theory , 2001, math/0101268.

[14]  S. Barry Cooper,et al.  Partial degrees and the density problem , 1982, Journal of Symbolic Logic.

[15]  Alistair H. Lachlan,et al.  The d.r.e. Degrees are Not Dense , 1991, Ann. Pure Appl. Log..

[16]  R. Shore The recursively enumerable α-degrees are dense , 1976 .

[17]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .