On Extensions of Embeddings into the Enumeration Degrees of the -Sets
暂无分享,去创建一个
[1] Alistair H. Lachlan,et al. Then-rea enumeration degrees are dense , 1992, Arch. Math. Log..
[2] Kevin McEvoy,et al. On minimal pairs of enumeration degrees , 1985, Journal of Symbolic Logic.
[3] Robert I. Soare,et al. Extension of embeddings in the computably enumerable degrees , 2001 .
[4] Julia F. Knight,et al. Generic Copies of Countable Structures , 1989, Ann. Pure Appl. Log..
[5] Rod Downey. Notes on the O‴ priority method with special attention to density results , 1990 .
[6] S. Barry Cooper,et al. Partial degrees and the density problem. Part 2: The enumeration degrees of the Σ2 sets are dense , 1984, Journal of Symbolic Logic.
[7] Graham Higman,et al. Existentially Closed Groups , 1988 .
[8] Alistair H. Lachlan,et al. Some Special Pairs Of Σ2 e-Degrees , 1998, Math. Log. Q..
[9] Theodore A. Slaman,et al. Definability in the enumeration degrees , 1997, Arch. Math. Log..
[10] Manuel Lerman,et al. Decidability and invariant classes for degree structures , 1988 .
[11] Richard A. Shore,et al. Embeddings and extensions of embeddings in the r.e. tt and wtt-degrees , 1985 .
[12] S. K. Thomason. Sublattices of the Recursively Enumerable Degrees , 1971 .
[13] Finite volume flows and Morse theory , 2001, math/0101268.
[14] S. Barry Cooper,et al. Partial degrees and the density problem , 1982, Journal of Symbolic Logic.
[15] Alistair H. Lachlan,et al. The d.r.e. Degrees are Not Dense , 1991, Ann. Pure Appl. Log..
[16] R. Shore. The recursively enumerable α-degrees are dense , 1976 .
[17] Jr. Hartley Rogers. Theory of Recursive Functions and Effective Computability , 1969 .