Computing generalized inverses using LU factorization of matrix product

An algorithm for computing {2, 3}, {2, 4}, {1, 2, 3}, {1, 2, 4} -inverses and the Moore–Penrose inverse of a given rational matrix A is established. Classes A{2, 3} s and A{2, 4} s are characterized in terms of matrix products (R*A)† R* and T*(AT*)†, where R and T are rational matrices with appropriate dimensions and corresponding rank. The proposed algorithm is based on these general representations and the Cholesky factorization of symmetric positive matrices. The algorithm is implemented in programming languages MATHEMATICA and DELPHI, and illustrated via examples. Numerical results of the algorithm, corres-ponding to the Moore–Penrose inverse, are compared with corresponding results obtained by several known methods for computing the Moore–Penrose inverse.

[1]  Predrag S. Stanimirovic,et al.  Symbolic computation of the Moore–Penrose inverse using a partitioning method , 2005, Int. J. Comput. Math..

[2]  Nicholas P. Karampetakis,et al.  Computation of the Generalized Inverse of a Polynomial Matrix and Applications , 1997 .

[3]  Yimin Wei,et al.  The algorithm for computing the Drazin inverses of two-variable polynomial matrices , 2004, Appl. Math. Comput..

[4]  Nicholas P. Karampetakis,et al.  Generalized inverses of two-variable polynomial matrices and applications , 1997 .

[5]  Jun Ji A finite algorithm for the Drazin inverse of a polynomial matrix , 2002, Appl. Math. Comput..

[6]  Predrag S. Stanimirovic,et al.  Partitioning method for rational and polynomial matrices , 2004, Appl. Math. Comput..

[7]  Basil G. Mertzios,et al.  Computation of the inverse of a polynomial matrix and evaluation of its Laurent expansion , 1991 .

[8]  P. Tzekis,et al.  On the computation of the generalized inverse of a polynomial matrix , 2001 .

[9]  Medhat Ahmed Rakha,et al.  On the Moore-Penrose generalized inverse matrix , 2004, Appl. Math. Comput..

[10]  Gerhard Zielke,et al.  Report on test matrices for generalized inverses , 1986, Computing.

[11]  R. J. Miller,et al.  An introduction to the application of the simplest matrix-generalized inverse in systems science , 1978 .

[12]  Yimin Wei,et al.  Successive matrix squaring algorithm for computing the Drazin inverse , 2000, Appl. Math. Comput..

[13]  R. J. Miller,et al.  Further results on output control in the servomechanism sense , 1978 .

[14]  Alan J. Mayne,et al.  Generalized Inverse of Matrices and its Applications , 1972 .

[15]  Adi Ben-Israel,et al.  Generalized inverses: theory and applications , 1974 .

[16]  Pierre Courrieu,et al.  Fast Computation of Moore-Penrose Inverse Matrices , 2008, ArXiv.

[17]  Milan B. Tasic,et al.  Drazin inverse of one-variable polynomial matrices , 2001 .

[18]  Stephen Wolfram,et al.  The Mathematica Book , 1996 .

[19]  C. D. Meyer,et al.  Generalized inverses of linear transformations , 1979 .

[20]  R. J. Miller,et al.  Transfer-function matrix synthesis by matrix generalized inverses , 1978 .

[21]  Nicholas P. Karampetakis,et al.  The Computation and Application of the Generalized Inverse via Maple , 1998, J. Symb. Comput..

[22]  Iain MacLeod,et al.  Generalised Matrix Inversion and Rank Computation by Successive Matrix Powering , 1994, Parallel Comput..

[23]  K. S. Banerjee Generalized Inverse of Matrices and Its Applications , 1973 .

[24]  Pierre Courrieu,et al.  Straight monotonic embedding of data sets in Euclidean spaces , 2002, Neural Networks.

[25]  Stephen Wolfram,et al.  The Mathematica book (4th edition) , 1999 .

[26]  Predrag S. Stanimirovic,et al.  A finite algorithm for generalized inverses of polynomial and rational matrices , 2003, Appl. Math. Comput..