Numerical approximation of bang-bang controls for the heat equation: An optimal design approach
暂无分享,去创建一个
[1] Faker Ben Belgacem,et al. On the Dirichlet boundary controllability of the one-dimensional heat equation: semi-analytical calculations and ill-posedness degree , 2011 .
[2] Enrique Zuazua,et al. On the regularity of null-controls of the linear 1-d heat equation , 2011 .
[3] R. Glowinski,et al. Exact and approximate controllability for distributed parameter systems , 1995, Acta Numerica.
[4] Jean-Pierre Puel,et al. Approximate controllability of the semilinear heat equation , 1995, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[5] Sigurd B. Angenent,et al. The zero set of a solution of a parabolic equation. , 1988 .
[6] Günter Leugering,et al. L∞-Norm minimal control of the wave equation: on the weakness of the bang-bang principle , 2008 .
[7] Hugo Leiva,et al. Approximate Controllability of a Semilinear Heat Equation , 2013 .
[8] Oleg Yu. Imanuvilov,et al. Controllability of Evolution equations , 1996 .
[9] Giovanni Alessandrini,et al. Null–controllability of One–dimensional Parabolic Equations , 2006 .
[10] Pablo Pedregal,et al. Relaxation of an optimal design problem for the heat equation , 2008 .
[11] Arnaud Münch,et al. Optimal distribution of the internal null control for the one-dimensional heat equation , 2011 .
[12] Martin Gugat,et al. Penalty Techniques for State Constrained Optimal Control Problems with the Wave Equation , 2009, SIAM J. Control. Optim..
[13] G. Lebeau,et al. Contróle Exact De Léquation De La Chaleur , 1995 .
[14] Enrique Zuazua,et al. Numerical approximation of null controls for the heat equation: Ill-posedness and remedies , 2010 .
[15] J. Lions,et al. Problèmes aux limites non homogènes et applications , 1968 .
[16] Arnaud Münch,et al. Optimal location of the support of the control for the 1-D wave equation: numerical investigations , 2009, Comput. Optim. Appl..
[17] Alejandro Pozo,et al. A numerical approach , 2011 .
[18] Antoine Henrot,et al. Variation et optimisation de formes : une analyse géométrique , 2005 .
[19] Arnaud Münch,et al. Numerical null controllability of semi-linear 1-D heat equations: Fixed point, least squares and Newton methods , 2012 .
[20] Faker Ben Belgacem,et al. On the Dirichlet Boundary Controllability of the 1 D-Heat Equation . Semi-Analytical Calculations and Ill-posedness Degree , 2010 .
[21] Enrique Zuazua,et al. On the Equivalence of Minimal Time and Minimal Norm Controls for Internally Controlled Heat Equations , 2012, SIAM J. Control. Optim..
[22] Enrique Zuazua,et al. Controllability and Observability of Partial Differential Equations: Some Results and Open Problems , 2007 .
[23] F. Tröltzsch. Optimal Control of Partial Differential Equations: Theory, Methods and Applications , 2010 .
[24] Antoine Henrot,et al. Variation et optimisation de formes , 2005 .
[25] Arnaud Münch,et al. Strong convergent approximations of null controls for the 1D heat equation , 2013 .
[26] K. Hoffmann,et al. Optimal Control of Partial Differential Equations , 1991 .
[27] R. Glowinski,et al. On exact and approximate boundary controllabilities for the heat equation: A numerical approach , 1994 .
[28] Roland Glowinski,et al. Exact and Approximate Controllability for Distributed Parameter Systems: A Numerical Approach , 2008 .
[29] J. Lions,et al. Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles , 1968 .
[30] Enrique Zuazua,et al. Regularity issues for the null-controllability of the linear 1-d heat equation , 2011, Syst. Control. Lett..
[31] Philippe Martin,et al. Null controllability of one-dimensional parabolic equations , 2014 .
[32] Stefan Wendl,et al. Optimal Control of Partial Differential Equations , 2021, Applied Mathematical Sciences.