Bacterial transcription terminators: the RNA 3'-end chronicles.

The process of transcription termination is essential to proper expression of bacterial genes and, in many cases, to the regulation of bacterial gene expression. Two types of bacterial transcriptional terminators are known to control gene expression. Intrinsic terminators dissociate transcription complexes without the assistance of auxiliary factors. Rho-dependent terminators are sites of dissociation mediated by an RNA helicase called Rho. Despite decades of study, the molecular mechanisms of both intrinsic and Rho-dependent termination remain uncertain in key details. Most knowledge is based on the study of a small number of model terminators. The extent of sequence diversity among functional terminators and the extent of mechanistic variation as a function of sequence diversity are largely unknown. In this review, we consider the current state of knowledge about bacterial termination mechanisms and the relationship between terminator sequence and steps in the termination mechanism.

[1]  C. Ingham,et al.  Rho-independent terminators without 3' poly-U tails from the early region of actinophage øC31. , 1995, Nucleic acids research.

[2]  A. Bolshoy,et al.  New Elements of the Termination of Transcription in Prokaryotes , 2004, Journal of biomolecular structure & dynamics.

[3]  P. V. von Hippel,et al.  The elongation-termination decision in transcription. , 1992, Science.

[4]  M. Tomita,et al.  Analysis of complete genomes suggests that many prokaryotes do not rely on hairpin formation in transcription termination. , 1998, Nucleic acids research.

[5]  Smita S. Patel Structural biology: Steps in the right direction , 2009, Nature.

[6]  R. Sen,et al.  Transcription Termination Factor Rho Prefers Catalytically Active Elongation Complexes for Releasing RNA* , 2008, Journal of Biological Chemistry.

[7]  J. Rossi,et al.  The tyrT locus: Termination and processing of a complex transcript , 1981, Cell.

[8]  D. Herschlag,et al.  Nanomechanical measurements of the sequence-dependent folding landscapes of single nucleic acid hairpins. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[9]  T. Wood,et al.  The NMR structure of the RNA binding domain of E.coli rho factor suggests possible RNA–protein interactions , 1998, Nature Structural Biology.

[10]  Jeffrey W. Roberts,et al.  Forward translocation is the natural pathway of RNA release at an intrinsic terminator. , 2004, Molecular cell.

[11]  T. Platt,et al.  Evidence supporting a tethered tracking model for helicase activity of Escherichia coli Rho factor. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Anirban Mitra,et al.  WebGeSTer DB—a transcription terminator database , 2010, Nucleic Acids Res..

[13]  Jeffrey W. Roberts,et al.  Mechanism of intrinsic transcription termination and antitermination. , 1999, Science.

[14]  E. Nudler,et al.  The mechanism of intrinsic transcription termination. , 1999, Molecular cell.

[15]  R. Sen,et al.  Interaction surface of the transcription terminator Rho required to form a complex with the C-terminal domain of the antiterminator NusG. , 2011, Journal of molecular biology.

[16]  K. Severinov,et al.  The role of the bacterial RNA polymerase β subunit flexible flap domain in transcription termination , 2006, Doklady Biochemistry and Biophysics.

[17]  M. Chamberlin,et al.  Pausing and termination of transcription within the early region of bacteriophage T7 DNA in vitro. , 1981, The Journal of biological chemistry.

[18]  Sharmistha Banerjee,et al.  Rho-dependent transcription termination: more questions than answers. , 2006, Journal of microbiology.

[19]  J. Richardson Rho-dependent termination and ATPases in transcript termination. , 2002, Biochimica et biophysica acta.

[20]  M. Kashlev,et al.  Mechanism of sequence-specific pausing of bacterial RNA polymerase , 2009, Proceedings of the National Academy of Sciences.

[21]  J. Gowrishankar,et al.  Host factor titration by chromosomal R-loops as a mechanism for runaway plasmid replication in transcription termination-defective mutants of Escherichia coli. , 2003, Journal of molecular biology.

[22]  C. Yanofsky,et al.  Regulation by transcription attenuation in bacteria: how RNA provides instructions for transcription termination/antitermination decisions. , 2002, BioEssays : news and reviews in molecular, cellular and developmental biology.

[23]  R. Landick,et al.  Allosteric Control of RNA Polymerase by a Site That Contacts Nascent RNA Hairpins , 2001, Science.

[24]  P. Cramer,et al.  Structural Basis of Transcription: RNA Polymerase II at 2.8 Ångstrom Resolution , 2001, Science.

[25]  M. Kashlev,et al.  Functional topography of nascent RNA in elongation intermediates of RNA polymerase. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[26]  J. Roberts,et al.  Rho-dependent transcription termination at lambda R1 requires upstream sequences. , 1985, The Journal of biological chemistry.

[27]  R. Landick,et al.  Direct Versus Limited-step Reconstitution Reveals Key Features of an RNA Hairpin-stabilized Paused Transcription Complex* , 2007, Journal of Biological Chemistry.

[28]  C. Yanofsky,et al.  Rho-dependent transcription termination in the tryptophanase operon leader region of Escherichia coli K-12 , 1986, Journal of bacteriology.

[29]  C. Chan,et al.  Dissection of the his leader pause site by base substitution reveals a multipartite signal that includes a pause RNA hairpin. , 1993, Journal of molecular biology.

[30]  K. Shigesada,et al.  Structural and functional dissections of transcription termination factor rho by random mutagenesis. , 1995, Journal of molecular biology.

[31]  T. Platt,et al.  Effects of decreased cytosine content on rho interaction with the rho-dependent terminator trp t' in Escherichia coli. , 1992, The Journal of biological chemistry.

[32]  P. V. von Hippel,et al.  Regulation of rho-dependent transcription termination by NusG is specific to the Escherichia coli elongation complex. , 2000, Biochemistry.

[33]  M. Chamberlin,et al.  Parameters affecting transcription termination by Escherichia coli RNA. II. Construction and analysis of hybrid terminators. , 1992, Journal of molecular biology.

[34]  J. Richardson Loading Rho to Terminate Transcription , 2003, Cell.

[35]  Jonathan Tennyson,et al.  Water vapour in the atmosphere of a transiting extrasolar planet , 2007, Nature.

[36]  E. Brody,et al.  Prediction of rho-independent Escherichia coli transcription terminators. A statistical analysis of their RNA stem-loop structures. , 1990 .

[37]  M. Kashlev,et al.  Shortening of RNA:DNA hybrid in the elongation complex of RNA polymerase is a prerequisite for transcription termination. , 2002, Molecular cell.

[38]  P. V. von Hippel,et al.  Transcription termination at intrinsic terminators: the role of the RNA hairpin. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[39]  D. Court,et al.  Sequences required for transcription termination at the intrinsic lambdatI terminator. , 2010, Canadian journal of microbiology.

[40]  Jens Michaelis,et al.  Nano positioning system reveals the course of upstream and nontemplate DNA within the RNA polymerase II elongation complex , 2009, Nucleic acids research.

[41]  Vitaly Epshtein,et al.  An allosteric mechanism of Rho-dependent transcription termination , 2010, Nature.

[42]  J. Geiselmann,et al.  A simple polypyrimidine repeat acts as an artificial Rho-dependent terminator in vivo and in vitro. , 1998, Nucleic acids research.

[43]  Jeffrey W. Roberts,et al.  Role of DNA bubble rewinding in enzymatic transcription termination. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[44]  M. Ciampi,et al.  Rho-dependent terminators and transcription termination. , 2006, Microbiology.

[45]  Ravindra V Dalal,et al.  Pulling on the nascent RNA during transcription does not alter kinetics of elongation or ubiquitous pausing. , 2006, Molecular cell.

[46]  V. Nagaraja,et al.  Genome-wide analysis of the intrinsic terminators of transcription across the genus Mycobacterium. , 2008, Tuberculosis.

[47]  J. Richardson,et al.  An RNA-dependent nucleoside triphosphate phosphohydrolase (ATPase) associated with rho termination factor. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[48]  E. Margeat,et al.  Keeping up to speed with the transcription termination factor Rho motor , 2010, Transcription.

[49]  T. Platt,et al.  Transcription termination factor rho is an RNA-DNA helicase , 1987, Cell.

[50]  C. Yanofsky,et al.  Release of transcript and template during transcription termination at the trp operon attenuator. , 1983, Journal of Biological Chemistry.

[51]  E. Anderson Hudson et al. , 1977 .

[52]  M. Gottesman,et al.  Requirement for E. coli NusG protein in factor-dependent transcription termination , 1992, Cell.

[53]  Julio Collado-Vides,et al.  RegulonDB version 7.0: transcriptional regulation of Escherichia coli K-12 integrated within genetic sensory response units (Gensor Units) , 2010, Nucleic Acids Res..

[54]  E. Margeat,et al.  Mutagenesis-based evidence for an asymmetric configuration of the ring-shaped transcription termination factor Rho. , 2011, Journal of molecular biology.

[55]  H. Heumann,et al.  Translocation of the Escherichia coli transcription complex observed in the registers 11 to 20: "jumping" of RNA polymerase and asymmetric expansion and contraction of the "transcription bubble". , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[56]  C. Squires,et al.  Proteins shared by the transcription and translation machines. , 2000, Annual review of microbiology.

[57]  R. Landick,et al.  Nuclease Cleavage of the Upstream Half of the Nontemplate Strand DNA in an Escherichia coli Transcription Elongation Complex Causes Upstream Translocation and Transcriptional Arrest* , 1997, The Journal of Biological Chemistry.

[58]  Jayanta Mukhopadhyay,et al.  The RNA Polymerase “Switch Region” Is a Target for Inhibitors , 2008, Cell.

[59]  E. Nudler,et al.  Mechanistic model of the elongation complex of Escherichia coli RNA polymerase. , 1998, Cold Spring Harbor symposia on quantitative biology.

[60]  R. Landick,et al.  Nonequilibrium mechanism of transcription termination from observations of single RNA polymerase molecules. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[61]  R. Landick,et al.  Two structurally independent domains of E. coli NusG create regulatory plasticity via distinct interactions with RNA polymerase and regulators. , 2009, Journal of molecular biology.

[62]  Martin Depken,et al.  The origin of short transcriptional pauses. , 2009, Biophysical journal.

[63]  R. Landick RNA Polymerase Clamps Down , 2001, Cell.

[64]  M. Chamberlin,et al.  Parameters affecting transcription termination by Escherichia coli RNA polymerase. I. Analysis of 13 rho-independent terminators. , 1992, Journal of molecular biology.

[65]  E. Nudler,et al.  An allosteric path to transcription termination. , 2007, Molecular cell.

[66]  S. Adhya,et al.  Control of transcription termination. , 1978, Annual review of biochemistry.

[67]  Chyi-Ying A. Chen,et al.  Transcription termination at λ tR1 is mediated by interaction of rho with specific single-stranded domains near the 3′ end of cro mRNA , 1986, Cell.

[68]  R. Burgess,et al.  Termination efficiency at rho-dependent terminators depends on kinetic coupling between RNA polymerase and rho. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[69]  Vivek K. Mutalik,et al.  Insights into transcriptional regulation and sigma competition from an equilibrium model of RNA polymerase binding to DNA. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[70]  J. Berger,et al.  Structural Insights into RNA-Dependent Ring Closure and ATPase Activation by the Rho Termination Factor , 2006, Cell.

[71]  Willy Wriggers,et al.  Conformational flexibility of bacterial RNA polymerase , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[72]  C. Yanofsky,et al.  Nucleotide sequence and expression of Escherichia coli trpR, the structural gene for the trp aporepressor. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[73]  S. Yokoyama,et al.  Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 Å resolution , 2002, Nature.

[74]  W. Mcallister,et al.  Termination and slippage by bacteriophage T7 RNA polymerase. , 1993, Journal of Molecular Biology.

[75]  Björn M. Burmann,et al.  A NusE:NusG Complex Links Transcription and Translation , 2010, Science.

[76]  B. Stitt,et al.  Evidence for amino acid roles in the chemistry of ATP hydrolysis in Escherichia coli Rho. , 2010, Journal of molecular biology.

[77]  V. Markovtsov,et al.  Transcription Processivity: Protein-DNA Interactions Holding Together the Elongation Complex , 1996, Science.

[78]  S. Salzberg,et al.  Prediction of transcription terminators in bacterial genomes. , 2000, Journal of molecular biology.

[79]  J M Berger,et al.  The structural basis for terminator recognition by the Rho transcription termination factor. , 1999, Molecular cell.

[80]  A. Ansari,et al.  Regulator trafficking on bacterial transcription units in vivo. , 2009, Molecular cell.

[81]  D. Court,et al.  Functional importance of sequence in the stem-loop of a transcription terminator. , 1991, Science.

[82]  Robert Landick,et al.  A central role of the RNA polymerase trigger loop in active-site rearrangement during transcriptional pausing. , 2007, Molecular cell.

[83]  J. Berger,et al.  Structure of the Rho Transcription Terminator Mechanism of mRNA Recognition and Helicase Loading , 2003, Cell.

[84]  G. Crooks,et al.  WebLogo: a sequence logo generator. , 2004, Genome research.

[85]  M. Gottesman,et al.  Transcription termination maintains chromosome integrity , 2010, Proceedings of the National Academy of Sciences.

[86]  M. Kashlev,et al.  Transcription Termination: Primary Intermediates and Secondary Adducts* , 2002, The Journal of Biological Chemistry.

[87]  Masaki Yamamoto,et al.  Crystal structure of bacterial RNA polymerase bound with a transcription inhibitor protein , 2010, Nature.

[88]  T. D. Schneider,et al.  Sequence logos: a new way to display consensus sequences. , 1990, Nucleic acids research.

[89]  E. Margeat,et al.  Transcription Termination Factor Rho Can Displace Streptavidin from Biotinylated RNA* , 2007, Journal of Biological Chemistry.

[90]  I. Pastan,et al.  Effect of Rho on transcription of bacterial operons. , 1973, Nature: New biology.

[91]  G. Dougan,et al.  Cooperation Between Translating Ribosomes and RNA Polymerase in Transcription Elongation , 2010, Science.

[92]  P. V. von Hippel,et al.  Structure and assembly of the Escherichia coli transcription termination factor rho and its interaction with RNA. I. Cryoelectron microscopic studies. , 1991, Journal of molecular biology.

[93]  K. Shigesada,et al.  Studies on the altered rho factor in a nitA mutants of Escherichia coli defective in transcription termination. I. Characterization and quantitative determination of rho in cell extracts. , 1978, Journal of molecular biology.

[94]  Jeffrey W. Roberts,et al.  Role of the non-template strand of the elongation bubble in intrinsic transcription termination. , 2003, Journal of molecular biology.

[95]  C. Y. Chen,et al.  Sequence elements essential for rho-dependent transcription termination at lambda tR1. , 1987, The Journal of biological chemistry.

[96]  M. Chamberlin,et al.  Terminator-distal sequences determine the in vitro efficiency of the early terminators of bacteriophages T3 and T7. , 1989, Biochemistry.

[97]  C. Bruni,et al.  A consensus motif common to all rho-dependent prokaryotic transcription terminators , 1991, Cell.

[98]  Robert Landick,et al.  Transcriptional pausing without backtracking , 2009, Proceedings of the National Academy of Sciences.

[99]  T. Platt,et al.  Tandem termination sites in the tryptophan operon of Escherichia coli. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[100]  V. Nagaraja,et al.  Occurrence, divergence and evolution of intrinsic terminators across eubacteria. , 2009, Genomics.

[101]  A. Rahmouni,et al.  Noncanonical interactions in the management of RNA structural blocks by the transcription termination rho helicase. , 2007, Biochemistry.

[102]  Evgeny Nudler,et al.  Termination Factor Rho and Its Cofactors NusA and NusG Silence Foreign DNA in E. coli , 2008, Science.

[103]  E. Nudler,et al.  The RNA–DNA Hybrid Maintains the Register of Transcription by Preventing Backtracking of RNA Polymerase , 1997, Cell.

[104]  M. Kashlev,et al.  RNA Polymerase Switches between Inactivated and Activated States By Translocating Back and Forth along the DNA and the RNA* , 1997, The Journal of Biological Chemistry.

[105]  J. Richardson,et al.  ATP-induced changes in the binding of RNA synthesis termination protein Rho to RNA. , 1980, Journal of molecular biology.

[106]  Nancy R Forde,et al.  Thermal probing of E. coli RNA polymerase off-pathway mechanisms. , 2008, Journal of molecular biology.

[107]  H. Aiba,et al.  Differential contributions of two elements of rho-independent terminator to transcription termination and mRNA stabilization. , 1996, Biochimie.

[108]  I. Tinoco,et al.  A thermodynamic study of unusually stable RNA and DNA hairpins. , 1991, Nucleic acids research.

[109]  V. Nagaraja,et al.  Conserved economics of transcription termination in eubacteria. , 2002, Nucleic acids research.

[110]  F. Imamoto,et al.  Promoters and autogenous control of the Escherichia coli hupA and hupB genes. , 1990, Journal of molecular biology.

[111]  S. Darst,et al.  A Structural Model of Transcription Elongation , 2000 .

[112]  T. Platt,et al.  Signals sufficient for rho-dependent transcription termination at trp t' span a region centered 60 base pairs upstream of the earliest 3' end point. , 1988, The Journal of biological chemistry.

[113]  Pei Fen Kuan,et al.  Rho directs widespread termination of intragenic and stable RNA transcription , 2009, Proceedings of the National Academy of Sciences.

[114]  I. Tinoco,et al.  Thermodynamic parameters for loop formation in RNA and DNA hairpin tetraloops. , 1992, Nucleic acids research.

[115]  W. Greenleaf,et al.  Single-molecule studies of RNA polymerase: motoring along. , 2008, Annual review of biochemistry.

[116]  S. Salzberg,et al.  Rapid, accurate, computational discovery of Rho-independent transcription terminators illuminates their relationship to DNA uptake , 2007, Genome Biology.

[117]  Jeffrey W. Roberts Termination Factor for RNA Synthesis , 1969, Nature.

[118]  J. Berger,et al.  Running in Reverse: The Structural Basis for Translocation Polarity in Hexameric Helicases , 2009, Cell.

[119]  Robert Landick,et al.  The flap domain is required for pause RNA hairpin inhibition of catalysis by RNA polymerase and can modulate intrinsic termination. , 2003, Molecular cell.

[120]  M. Chamberlin,et al.  Sequences linked to prokaryotic promoters can affect the efficiency of downstream termination sites. , 1989, Journal of molecular biology.

[121]  P. V. von Hippel,et al.  Stability of Escherichia coli transcription complexes near an intrinsic terminator. , 1994, Journal of molecular biology.

[122]  R. Landick,et al.  Transcription pausing by Escherichia coli RNA polymerase is modulated by downstream DNA sequences. , 1990, The Journal of biological chemistry.

[123]  J. Roberts,et al.  Rho-dependent transcription termination. Characterization of the requirement for cytidine in the nascent transcript. , 1991, The Journal of biological chemistry.

[124]  Martin Gruebele,et al.  Exploring the energy landscape of a small RNA hairpin. , 2006, Journal of the American Chemical Society.

[125]  M. Palumbo,et al.  Widespread Antisense Transcription in Escherichia coli , 2010, mBio.

[126]  P. V. von Hippel,et al.  Rho-dependent termination of transcription. II. Kinetics of mRNA elongation during transcription from the bacteriophage lambda PR promoter. , 1983, The Journal of biological chemistry.

[127]  C. Chan,et al.  Multiple interactions stabilize a single paused transcription intermediate in which hairpin to 3' end spacing distinguishes pause and termination pathways. , 1997, Journal of molecular biology.

[128]  V. Nagaraja,et al.  Alternate Paradigm for Intrinsic Transcription Termination in Eubacteria* 210 , 2001, The Journal of Biological Chemistry.

[129]  P. V. von Hippel,et al.  Interactions of Escherichia coli transcription termination factor rho with RNA. I. Binding stoichiometries and free energies. , 1988, Journal of molecular biology.

[130]  C. Condon,et al.  Ribosomal protein S4 is a transcription factor with properties remarkably similar to NusA, a protein involved in both non‐ribosomal and ribosomal RNA antitermination , 2001, The EMBO journal.

[131]  J. Mcneil,et al.  Prediction of rho-independent transcriptional terminators in Escherichia coli. , 2001, Nucleic acids research.

[132]  Steven M. Block,et al.  Applied Force Reveals Mechanistic and Energetic Details of Transcription Termination , 2008, Cell.

[133]  D Court,et al.  Regulatory sequences involved in the promotion and termination of RNA transcription. , 1979, Annual review of genetics.

[134]  Satoru Miyano,et al.  Prediction of Transcriptional Terminators in Bacillus subtilis and Related Species , 2005, PLoS Comput. Biol..

[135]  J. Roberts,et al.  Early transcribed sequences affect termination efficiency of Escherichia coli RNA polymerase. , 1989, Journal of molecular biology.

[136]  Tahir H. Tahirov,et al.  Structural basis for transcription elongation by bacterial RNA polymerase , 2007, Nature.