Diversity, versatility and complexity of bacterial gene regulation mechanisms: opportunities and drawbacks for applications in synthetic biology

Abstract Gene expression occurs in two essential steps: transcription and translation. In bacteria, the two processes are tightly coupled in time and space, and highly regulated. Tight regulation of gene expression is crucial. It limits wasteful consumption of resources and energy, prevents accumulation of potentially growth inhibiting reaction intermediates, and sustains the fitness and potential virulence of the organism in a fluctuating, competitive and frequently stressful environment. Since the onset of studies on regulation of enzyme synthesis, numerous distinct regulatory mechanisms modulating transcription and/or translation have been discovered. Mostly, various regulatory mechanisms operating at different levels in the flow of genetic information are used in combination to control and modulate the expression of a single gene or operon. Here, we provide an extensive overview of the very diverse and versatile bacterial gene regulatory mechanisms with major emphasis on their combined occurrence, intricate intertwinement and versatility. Furthermore, we discuss the potential of well-characterized basal expression and regulatory elements in synthetic biology applications, where they may ensure orthogonal, predictable and tunable expression of (heterologous) target genes and pathways, aiming at a minimal burden for the host.

[1]  Y. Kyōgoku,et al.  Translational induction of heat shock transcription factor sigma32: evidence for a built-in RNA thermosensor. , 1999, Genes & development.

[2]  B. Görke,et al.  Catabolite control of Escherichia coli regulatory protein BglG activity by antagonistically acting phosphorylations , 1999, The EMBO journal.

[3]  Thomas H. Segall-Shapiro,et al.  Modular control of multiple pathways using engineered orthogonal T7 polymerases , 2012, Nucleic acids research.

[4]  M. De Mey,et al.  A sigma factor toolbox for orthogonal gene expression in Escherichia coli , 2018, Nucleic acids research.

[5]  Samuel M. D. Oliveira,et al.  Dissecting the stochastic transcription initiation process in live Escherichia coli , 2016, DNA research : an international journal for rapid publication of reports on genes and genomes.

[6]  A. Miyoshi,et al.  σECF factors of gram-positive bacteria , 2014, Virulence.

[7]  Mariliis Tark-Dame,et al.  Bacterial chromatin: converging views at different scales. , 2016, Current opinion in cell biology.

[8]  H. Salis The ribosome binding site calculator. , 2011, Methods in enzymology.

[9]  R. Gourse,et al.  An alternative strategy for bacterial ribosome synthesis: Bacillus subtilis rRNA transcription regulation , 2004, The EMBO journal.

[10]  D. Stuart,et al.  Evolution of Complex RNA Polymerases: The Complete Archaeal RNA Polymerase Structure , 2009, PLoS biology.

[11]  M. F. White,et al.  The Major Architects of Chromatin: Architectural Proteins in Bacteria, Archaea and Eukaryotes , 2008 .

[12]  M. Grunberg‐Manago,et al.  Aminoacyl-tRNA synthetase gene regulation in Bacillus subtilis. , 1996, Biochimie.

[13]  J. Geiselmann,et al.  Expression dynamics of RpoS/Crl-dependent genes in Escherichia coli. , 2013, Research in microbiology.

[14]  Daniel M. Stoebel,et al.  Anti-silencing: overcoming H-NS-mediated repression of transcription in Gram-negative enteric bacteria. , 2008, Microbiology.

[15]  Ruth Nussinov,et al.  How do transcription factors select specific binding sites in the genome? , 2009, Nature Structural &Molecular Biology.

[16]  E. Nudler,et al.  Control of Intrinsic Transcription Termination by N and NusA The Basic Mechanisms , 2001, Cell.

[17]  Michael Famulok,et al.  Aptamers for allosteric regulation. , 2011, Nature chemical biology.

[18]  S. Muyldermans,et al.  Expanded target and cofactor repertoire for the transcriptional activator LysM from Sulfolobus , 2013, Nucleic acids research.

[19]  M. Grunberg‐Manago,et al.  Transfer RNA-mediated antitermination in vitro. , 2002, Nucleic acids research.

[20]  Gary Parkinson,et al.  Structural Basis of Transcription Activation: The CAP-αCTD-DNA Complex , 2002, Science.

[21]  C. Yanofsky,et al.  Regulation by transcription attenuation in bacteria: how RNA provides instructions for transcription termination/antitermination decisions. , 2002, BioEssays : news and reviews in molecular, cellular and developmental biology.

[22]  W. Gilbert,et al.  The lac operator is DNA. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[23]  H. Tilbeurgh Structural insights into the regulation of bacterial signalling proteins containing PRDs. , 2001 .

[24]  D. Hilbert,et al.  Compartmentalization of Gene Expression during Bacillus subtilis Spore Formation , 2004, Microbiology and Molecular Biology Reviews.

[25]  V. Shingler Signal sensory systems that impact σ⁵⁴ -dependent transcription. , 2011, FEMS microbiology reviews.

[26]  T. Mascher,et al.  Engineering orthogonal synthetic timer circuits based on extracytoplasmic function σ factors , 2018, Nucleic acids research.

[27]  G. Storz,et al.  Bacterial antisense RNAs: how many are there, and what are they doing? , 2010, Annual review of genetics.

[28]  E. Marcotte,et al.  Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation , 2007, Nature Biotechnology.

[29]  M. Wolfgang,et al.  Functional Analyses of the RsmY and RsmZ Small Noncoding Regulatory RNAs in Pseudomonas aeruginosa , 2018, Journal of bacteriology.

[30]  C Yanofsky,et al.  Inhibition of the B. subtilis Regulatory Protein TRAP by the TRAP-Inhibitory Protein, AT , 2001, Science.

[31]  Antonis Papachristodoulou,et al.  Ribo-attenuators: novel elements for reliable and modular riboswitch engineering , 2017, Scientific Reports.

[32]  D. Patel,et al.  RNA-structural Mimicry in Escherichia coli Ribosomal Protein L4-dependent Regulation of the S10 Operon* , 2003, Journal of Biological Chemistry.

[33]  M. Deutscher,et al.  Degradation of RNA in bacteria: comparison of mRNA and stable RNA , 2006, Nucleic acids research.

[34]  Weston R. Whitaker,et al.  Toward scalable parts families for predictable design of biological circuits. , 2008, Current opinion in microbiology.

[35]  Robert Landick,et al.  Bacterial transcription terminators: the RNA 3'-end chronicles. , 2011, Journal of molecular biology.

[36]  J. Monod,et al.  Genetic regulatory mechanisms in the synthesis of proteins. , 1961, Journal of molecular biology.

[37]  D. Hinton Transcriptional control in the prereplicative phase of T4 development , 2010, Virology Journal.

[38]  R. Gourse,et al.  Roles of Transcriptional and Translational Control Mechanisms in Regulation of Ribosomal Protein Synthesis in Escherichia coli , 2017, Journal of bacteriology.

[39]  D. Wemmer,et al.  Structural basis of DNA recognition by the alternative sigma-factor, sigma54. , 2007, Journal of molecular biology.

[40]  C. Turnbough,et al.  Regulation of Pyrimidine Biosynthetic Gene Expression in Bacteria: Repression without Repressors , 2008, Microbiology and Molecular Biology Reviews.

[41]  David J. Studholme,et al.  The Bacterial Enhancer-Dependent ς54(ςN) Transcription Factor , 2000, Journal of bacteriology.

[42]  S. Marzi,et al.  Multiple ways to regulate translation initiation in bacteria: Mechanisms, regulatory circuits, dynamics. , 2015, Biochimie.

[43]  J. Mukhopadhyay,et al.  Novel mechanism of gene regulation: the protein Rv1222 of Mycobacterium tuberculosis inhibits transcription by anchoring the RNA polymerase onto DNA , 2015, Nucleic acids research.

[44]  J. Neuhard,et al.  Cloning, nucleotide sequence and regulation of the Salmonella typhimurium pyrD gene encoding dihydroorotate dehydrogenase. , 1990, European journal of biochemistry.

[45]  Jo Maertens,et al.  Construction and model-based analysis of a promoter library for E. coli: an indispensable tool for metabolic engineering , 2007, BMC biotechnology.

[46]  S. Ramakumar,et al.  Structural and evolutionary analyses reveal determinants of DNA binding specificities of nucleoid-associated proteins HU and IHF. , 2017, Molecular phylogenetics and evolution.

[47]  Robert A. LaRossa,et al.  DNA Microarray-Mediated Transcriptional Profiling of the Escherichia coli Response to Hydrogen Peroxide , 2001, Journal of bacteriology.

[48]  S. Darst,et al.  Structure of the Bacterial RNA Polymerase Promoter Specificity σ Subunit , 2002 .

[49]  S. Yokoyama,et al.  Structural Basis for Transcription Regulation by Alarmone ppGpp , 2004, Cell.

[50]  C. Turnbough,et al.  Nucleotide sequence and expression of the pyrC gene of Escherichia coli K-12 , 1987, Journal of bacteriology.

[51]  Saul I. Gass,et al.  The Many Faces of OR , 1991 .

[52]  Tony Romeo,et al.  Post-transcriptional regulation on a global scale: form and function of Csr/Rsm systems. , 2013, Environmental microbiology.

[53]  Frederico J. Gueiros-Filho,et al.  The stringent response plays a key role in Bacillus subtilis survival of fatty acid starvation , 2017, Molecular microbiology.

[54]  R. Ebright,et al.  Bacterial promoter architecture: subsite structure of UP elements and interactions with the carboxy-terminal domain of the RNA polymerase alpha subunit. , 1999, Genes & development.

[55]  A. Gründling,et al.  ppGpp negatively impacts ribosome assembly affecting growth and antimicrobial tolerance in Gram-positive bacteria , 2016, Proceedings of the National Academy of Sciences.

[56]  A. Serganov,et al.  A Decade of Riboswitches , 2013, Cell.

[57]  S. Gottesman,et al.  sRNA-Mediated Control of Transcription Termination in E. coli , 2016, Cell.

[58]  L. M. Mateos,et al.  Structural snapshots of OxyR reveal the peroxidatic mechanism of H2O2 sensing , 2018, Proceedings of the National Academy of Sciences.

[59]  M. Waldor,et al.  LexA Represses CTXΦ Transcription by Blocking Access of the α C-terminal Domain of RNA Polymerase to Promoter DNA* , 2006, Journal of Biological Chemistry.

[60]  Yohei Yokobayashi,et al.  An efficient platform for genetic selection and screening of gene switches in Escherichia coli , 2009, Nucleic acids research.

[61]  N. Brown,et al.  The MerR family of transcriptional regulators. , 2003, FEMS microbiology reviews.

[62]  B. Miroux,et al.  A novel regulation mechanism of the T7 RNA polymerase based expression system improves overproduction and folding of membrane proteins , 2018, Scientific Reports.

[63]  K. Nagai,et al.  RNase G-Dependent Degradation of the eno mRNA Encoding a Glycolysis Enzyme Enolase in Escherichia coli , 2002, Bioscience, biotechnology, and biochemistry.

[64]  Raphael Nudelman,et al.  OxyR A Molecular Code for Redox-Related Signaling , 2002, Cell.

[65]  S. Borkotoky,et al.  The highly efficient T7 RNA polymerase: A wonder macromolecule in biological realm. , 2018, International journal of biological macromolecules.

[66]  Matthew R Bennett,et al.  Library of synthetic transcriptional AND gates built with split T7 RNA polymerase mutants , 2013, Proceedings of the National Academy of Sciences.

[67]  R. Rauhut,et al.  mRNA degradation in bacteria. , 1999, FEMS microbiology reviews.

[68]  L. Kaltenbach,et al.  Specific binding of PapI to Lrp-pap DNA complexes , 1995, Journal of bacteriology.

[69]  S. Gorski,et al.  Bacterial RNA Biology on a Genome Scale. , 2018, Molecular cell.

[70]  B. S. Laursen,et al.  Initiation of Protein Synthesis in Bacteria , 2005, Microbiology and Molecular Biology Reviews.

[71]  M. Swanson,et al.  ppGpp: magic beyond RNA polymerase , 2012, Nature Reviews Microbiology.

[72]  Sang Yup Lee,et al.  Recent trends in metabolic engineering of microorganisms for the production of advanced biofuels. , 2016, Current opinion in chemical biology.

[73]  Nan Zhang,et al.  The bacterial enhancer-dependent RNA polymerase , 2016, The Biochemical journal.

[74]  Stuti K Desai,et al.  To ∼P or Not to ∼P? Non‐canonical activation by two‐component response regulators , 2017, Molecular microbiology.

[75]  Nancy Kelley-Loughnane,et al.  Screening and selection of artificial riboswitches. , 2018, Methods.

[76]  N. Fujita,et al.  Novel Roles of cAMP Receptor Protein (CRP) in Regulation of Transport and Metabolism of Carbon Sources , 2011, PloS one.

[77]  C. Ehresmann,et al.  Ribosomal protein S15 from Escherichia coli modulates its own translation by trapping the ribosome on the mRNA initiation loading site. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[78]  A. Martínez-Antonio,et al.  Consensus architecture of promoters and transcription units in Escherichia coli: design principles for synthetic biology. , 2017, Molecular bioSystems.

[79]  B. Ahmer,et al.  Regulation of Bacterial Virulence by Csr (Rsm) Systems , 2015, Microbiology and Molecular Reviews.

[80]  Nan Zhang,et al.  Structures of RNA Polymerase Closed and Intermediate Complexes Reveal Mechanisms of DNA Opening and Transcription Initiation , 2017, Molecular cell.

[81]  Mark S Dunstan,et al.  Modular riboswitch toolsets for synthetic genetic control in diverse bacterial species. , 2014, Journal of the American Chemical Society.

[82]  E. Pérez-Rueda,et al.  Scaling relationship in the gene content of transcriptional machinery in bacteria. , 2009, Molecular bioSystems.

[83]  H. Zalkin,et al.  Repression of Escherichia coli purB is by a transcriptional roadblock mechanism , 1992, Journal of bacteriology.

[84]  T. Egli,et al.  sigmaS, a major player in the response to environmental stresses in Escherichia coli: role, regulation and mechanisms of promoter recognition. , 2014, Environmental microbiology reports.

[85]  A. Najafi,et al.  Natural antisense RNAs as mRNA regulatory elements in bacteria: a review on function and applications , 2016, Cellular & Molecular Biology Letters.

[86]  Joseph H. Davis,et al.  Design, construction and characterization of a set of insulated bacterial promoters , 2010, Nucleic acids research.

[87]  Todd G. Smith,et al.  Deciphering bacterial flagellar gene regulatory networks in the genomic era. , 2009, Advances in applied microbiology.

[88]  D. Imamura,et al.  Evidence That the Bacillus subtilis SpoIIGA Protein Is a Novel Type of Signal-transducing Aspartic Protease* , 2008, Journal of Biological Chemistry.

[89]  P. Loubière,et al.  Bacterial translational regulations: high diversity between all mRNAs and major role in gene expression , 2012, BMC Genomics.

[90]  S. McLeod,et al.  Mechanism of chromosome compaction and looping by the Escherichia coli nucleoid protein Fis. , 2006, Journal of molecular biology.

[91]  A. Dombroski,et al.  Region 1 of sigma70 is required for efficient isomerization and initiation of transcription by Escherichia coli RNA polymerase. , 1997, Journal of molecular biology.

[92]  S. Gottesman,et al.  Regulation of Proteolysis of the Stationary-Phase Sigma Factor RpoS , 1998, Journal of bacteriology.

[93]  Edmund C Schwartz,et al.  A full-length group 1 bacterial sigma factor adopts a compact structure incompatible with DNA binding. , 2008, Chemistry & biology.

[94]  Eric Klavins,et al.  Fine-tuning gene networks using simple sequence repeats , 2012, Proceedings of the National Academy of Sciences.

[95]  J. Kondev,et al.  Bacterial RNA polymerase can retain σ70 throughout transcription , 2016, Proceedings of the National Academy of Sciences.

[96]  Xiangwu Nou,et al.  Regulation of pyelonephritis‐associated pili phase‐variation in Escherichia coli: binding of the Papl and the Lrp regulatory proteins is controlled by DNA methylation , 1993, Molecular microbiology.

[97]  Zhanglin Lin,et al.  Bacterial Sigma Factors as Targets for Engineered or Synthetic Transcriptional Control , 2014, Front. Bioeng. Biotechnol..

[98]  R. Gourse,et al.  A third recognition element in bacterial promoters: DNA binding by the alpha subunit of RNA polymerase. , 1993, Science.

[99]  R. Gourse,et al.  Mechanism of regulation of transcription initiation by ppGpp. II. Models for positive control based on properties of RNAP mutants and competition for RNAP. , 2001, Journal of molecular biology.

[100]  G. Cesareni,et al.  Base pairing of RNA I with its complementary sequence in the primer precursor inhibits ColE1 replication , 1981, Nature.

[101]  R. Breaker,et al.  An mRNA structure that controls gene expression by binding FMN , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[102]  M. Schumacher,et al.  Crystal structure of LacI member, PurR, bound to DNA: minor groove binding by alpha helices. , 1994, Science.

[103]  John D. Helmann,et al.  Protein family review - The sigma(70) family of sigma factors , 2003 .

[104]  H. Pedersen,et al.  A flexible partnership: the CytR anti‐activator and the cAMP–CRP activator protein, comrades in transcription control , 1996, Molecular microbiology.

[105]  É. Massé,et al.  Noncanonical repression of translation initiation through small RNA recruitment of the RNA chaperone Hfq. , 2012, Genes & development.

[106]  S. Shimizu,et al.  Microbial Production , 2014, Springer Japan.

[107]  Vivek K. Mutalik,et al.  Insights into transcriptional regulation and sigma competition from an equilibrium model of RNA polymerase binding to DNA. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[108]  J. Belasco,et al.  Lost in translation: the influence of ribosomes on bacterial mRNA decay. , 2005, Genes & development.

[109]  M. Meyer-Hermann,et al.  Functional modules of sigma factor regulons guarantee adaptability and evolvability , 2016, Scientific Reports.

[110]  R. Batey,et al.  Modularity of select riboswitch expression platforms enables facile engineering of novel genetic regulatory devices. , 2013, ACS synthetic biology.

[111]  J. Beckwith,et al.  Mechanism of activation of catabolite-sensitive genes: a positive control system. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[112]  Robert M. Blumenthal,et al.  Unexpected Coregulator Range for the Global Regulator Lrp of Escherichia coli and Proteus mirabilis , 2010, Journal of bacteriology.

[113]  Jacques Monod,et al.  Genetic Regulatory Mechanisms in the Synthesis of Proteins , 1978 .

[114]  S. Maddocks,et al.  Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. , 2008, Microbiology.

[115]  S. Crosson,et al.  Bacterial lifestyle shapes stringent response activation. , 2013, Trends in microbiology.

[116]  Yeon-Ran Kim,et al.  RppH-dependent pyrophosphohydrolysis of mRNAs is regulated by direct interaction with DapF in Escherichia coli , 2014, Nucleic acids research.

[117]  D. Libri,et al.  Transcription Termination: Variations on Common Themes. , 2016, Trends in genetics : TIG.

[118]  A. Heltzel,et al.  Activator-dependent preinduction binding of sigma-70 RNA polymerase at the metal-regulated mer promoter. , 1990, Biochemistry.

[119]  S. Chen,et al.  Leucine-regulated self-association of leucine-responsive regulatory protein (Lrp) from Escherichia coli. , 2001, Journal of molecular biology.

[120]  Christopher A. Voigt,et al.  Genomic Mining of Prokaryotic Repressors for Orthogonal Logic Gates , 2013, Nature chemical biology.

[121]  Christopher A. Voigt,et al.  Design of orthogonal genetic switches based on a crosstalk map of σs, anti-σs, and promoters , 2013, Molecular Systems Biology.

[122]  R. Fairman,et al.  Quantitative analysis of DNA binding by the Escherichia coli arginine repressor. , 2001, Journal of molecular biology.

[123]  F. Rojo,et al.  Binding of phage phi29 protein p4 to the early A2c promoter: recruitment of a repressor by the RNA polymerase. , 1998, Journal of molecular biology.

[124]  C. Turnbough,et al.  A Long T · A Tract in the uppInitially Transcribed Region Is Required for Regulation ofupp Expression by UTP-Dependent Reiterative Transcription inEscherichia coli , 2001, Journal of bacteriology.

[125]  T. Afonyushkin,et al.  Coincident Hfq binding and RNase E cleavage sites on mRNA and small regulatory RNAs. , 2003, RNA.

[126]  Lihua Jin,et al.  Asymmetric allosteric activation of the symmetric ArgR hexamer. , 2005, Journal of molecular biology.

[127]  D. Charlier,et al.  Differential protein-DNA contacts for activation and repression by ArgP, a LysR-type (LTTR) transcriptional regulator in Escherichia coli. , 2018, Microbiological research.

[128]  C. Wyman,et al.  Structural basis for preferential binding of H-NS to curved DNA. , 2001, Biochimie.

[129]  S. Kim,et al.  DNA looping generated by DNA bending protein IHF and the two domains of lambda integrase , 1989, Science.

[130]  N. Glansdorff,et al.  The arginine repressor of Escherichia coli K-12 makes direct contacts to minor and major groove determinants of the operators. , 1998, Journal of molecular biology.

[131]  Torsten Waldminghaus,et al.  FourU: a novel type of RNA thermometer in Salmonella , 2007, Molecular microbiology.

[132]  S. Adhya,et al.  Transcription antitermination by bacteriophage lambda N gene product. , 1980, Journal of molecular biology.

[133]  S. Darst,et al.  Regulation of bacterial RNA polymerase sigma factor activity: a structural perspective. , 2008, Current opinion in microbiology.

[134]  J. Belasco,et al.  Growth-rate dependent regulation of mRNA stability in Escherichia coli , 1984, Nature.

[135]  T. Nyström,et al.  The Role of the Alarmone (p)ppGpp in ςN Competition for Core RNA Polymerase* , 2003, The Journal of Biological Chemistry.

[136]  R. Ebright,et al.  Response of RNA polymerase to ppGpp: requirement for the omega subunit and relief of this requirement by DksA. , 2005, Genes & development.

[137]  Peter Ruhdal Jensen,et al.  Tunable promoters in synthetic and systems biology. , 2012, Sub-cellular biochemistry.

[138]  A. Ishihama,et al.  Twelve Species of the Nucleoid-associated Protein from Escherichia coli , 1999, The Journal of Biological Chemistry.

[139]  Christian L. Barrett,et al.  Genome-scale reconstruction of the Lrp regulatory network in Escherichia coli , 2008, Proceedings of the National Academy of Sciences.

[140]  Jamie Richards,et al.  Distinct Requirements for 5′-Monophosphate-assisted RNA Cleavage by Escherichia coli RNase E and RNase G* , 2015, The Journal of Biological Chemistry.

[141]  C. Gualerzi,et al.  Transcriptional and post-transcriptional control of cold-shock genes. , 2003, Journal of molecular biology.

[142]  B. Suess,et al.  Small-Molecule-Binding Riboswitches. , 2018, Microbiology spectrum.

[143]  M. Gribskov,et al.  The sigma 70 family: sequence conservation and evolutionary relationships , 1992, Journal of bacteriology.

[144]  S. Maclellan,et al.  The essential activities of the bacterial sigma factor. , 2017, Canadian journal of microbiology.

[145]  L. Kroos,et al.  Control of σ factor activity during Bacillus subtilis sporulation , 1999, Molecular microbiology.

[146]  Ronald R. Breaker,et al.  Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression , 2002, Nature.

[147]  C. Dorman Co-operative roles for DNA supercoiling and nucleoid-associated proteins in the regulation of bacterial transcription. , 2013, Biochemical Society transactions.

[148]  B. Luisi,et al.  Recognition of enolase in the Escherichia coli RNA degradosome. , 2006, Journal of molecular biology.

[149]  R. Landick,et al.  Pausing by bacterial RNA polymerase is mediated by mechanistically distinct classes of signals. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[150]  J. Guglielmini,et al.  Proteome remodelling by the stress sigma factor RpoS/σS in Salmonella: identification of small proteins and evidence for post-transcriptional regulation , 2017, Scientific Reports.

[151]  B. Castaing,et al.  HU Protein of Escherichia coli Binds Specifically to DNA That Contains Single-strand Breaks or Gaps (*) , 1995, The Journal of Biological Chemistry.

[152]  C. Turnbough,et al.  Regulation of carAB Expression inEscherichia coli Occurs in Part through UTP-Sensitive Reiterative Transcription , 1998, Journal of bacteriology.

[153]  Emily F. Ruff,et al.  Mechanism of transcription initiation and promoter escape by E. coli RNA polymerase , 2017, Proceedings of the National Academy of Sciences.

[154]  F. Werner,et al.  Evolution of multisubunit RNA polymerases in the three domains of life , 2011, Nature Reviews Microbiology.

[155]  J. Calvo,et al.  Cooperative binding of the leucine-responsive regulatory protein (Lrp) to DNA. , 2005, Journal of molecular biology.

[156]  T. Afonyushkin,et al.  Both RNase E and RNase III control the stability of sodB mRNA upon translational inhibition by the small regulatory RNA RyhB , 2005, Nucleic acids research.

[157]  Michael Green,et al.  Symmetric Allosteric Mechanism of Hexameric Escherichia coli Arginine Repressor Exploits Competition between L-Arginine Ligands and Resident Arginine Residues , 2010, PLoS Comput. Biol..

[158]  K. Yokoyama,et al.  Transcription regulation by feast/famine regulatory proteins, FFRPs, in archaea and eubacteria. , 2008, Biological & pharmaceutical bulletin.

[159]  J. Calvo,et al.  Lrp, a major regulatory protein in Escherichia coli, bends DNA and can organize the assembly of a higher‐order nucleoprotein structure. , 1993, The EMBO journal.

[160]  B. Palsson,et al.  Genome-scale reconstruction of the sigma factor network in Escherichia coli: topology and functional states , 2014, BMC Biology.

[161]  Grant M. Rotskoff,et al.  Structural basis of a protein partner switch that regulates the general stress response of α-proteobacteria , 2012, Proceedings of the National Academy of Sciences.

[162]  Christopher A. Voigt,et al.  Automated Design of Synthetic Ribosome Binding Sites to Precisely Control Protein Expression , 2009, Nature Biotechnology.

[163]  J. Gowrishankar,et al.  Environmental regulation operating at the promoter clearance step of bacterial transcription. , 2007, Genes & development.

[164]  J. Hahn,et al.  RsrA, an anti‐sigma factor regulated by redox change , 1999, The EMBO journal.

[165]  Alberto Marina,et al.  Structural Insight into Partner Specificity and Phosphoryl Transfer in Two-Component Signal Transduction , 2009, Cell.

[166]  Michael J. Sweredoski,et al.  Systematic approach for dissecting the molecular mechanisms of transcriptional regulation in bacteria , 2018, Proceedings of the National Academy of Sciences.

[167]  O. Soutourina,et al.  Identification of c-di-GMP-Responsive Riboswitches. , 2017, Methods in molecular biology.

[168]  Liskin Swint-Kruse,et al.  Allostery in the LacI/GalR family: variations on a theme. , 2009, Current opinion in microbiology.

[169]  J. Collins,et al.  Complex cellular logic computation using ribocomputing devices , 2017, Nature.

[170]  R. Losick,et al.  Extracellular signal protein triggering the proteolytic activation of a developmental transcription factor in B. subtilis , 1995, Cell.

[171]  R. Gourse,et al.  Mechanism of regulation of transcription initiation by ppGpp. I. Effects of ppGpp on transcription initiation in vivo and in vitro. , 2001, Journal of molecular biology.

[172]  D. Gigot,et al.  Integration Host Factor (IHF) modulates the expression of the pyrimidine-specific promoter of the carAB operons of Escherichia coli K12 and Salmonella typhimurium LT2 , 1993, Molecular and General Genetics MGG.

[173]  S. Crosson,et al.  The complex logic of stringent response regulation in Caulobacter crescentus: starvation signalling in an oligotrophic environment , 2011, Molecular microbiology.

[174]  C. Turnbough Regulation of Escherichia coli aspartate transcarbamylase synthesis by guanosine tetraphosphate and pyrimidine ribonucleoside triphosphates , 1983, Journal of bacteriology.

[175]  Franziska Mika,et al.  Small RNAs in the control of RpoS, CsgD, and biofilm architecture of Escherichia coli , 2014, RNA biology.

[176]  R. Wagner,et al.  LRP and H‐NS – cooperative partners for transcription regulation at Escherichia coli rRNA promoters , 2005, Molecular microbiology.

[177]  P. V. von Hippel,et al.  Regulation of the elongation-termination decision at intrinsic terminators by antitermination protein N of phage lambda. , 1997, Journal of molecular biology.

[178]  D. Charlier,et al.  Regulation of carbamoylphosphate synthesis in Escherichia coli: an amazing metabolite at the crossroad of arginine and pyrimidine biosynthesis , 2018, Amino Acids.

[179]  Jue D. Wang,et al.  Control of bacterial transcription, translation and replication by (p)ppGpp. , 2008, Current opinion in microbiology.

[180]  Baojun Wang,et al.  Tools and Principles for Microbial Gene Circuit Engineering. , 2016, Journal of molecular biology.

[181]  E. Pérez-Rueda,et al.  Abundance, diversity and domain architecture variability in prokaryotic DNA-binding transcription factors , 2018, PloS one.

[182]  N. Fujita,et al.  Competition among seven Escherichia coli sigma subunits: relative binding affinities to the core RNA polymerase. , 2000, Nucleic acids research.

[183]  D. Hinton,et al.  Novel architectural features of Bordetella pertussis fimbrial subunit promoters and their activation by the global virulence regulator BvgA , 2010, Molecular microbiology.

[184]  Ann M Stock,et al.  Bacterial response regulators: versatile regulatory strategies from common domains. , 2007, Trends in biochemical sciences.

[185]  J. Wade,et al.  Comprehensive Mapping of the Escherichia coli Flagellar Regulatory Network , 2014, PLoS genetics.

[186]  D. Swigon,et al.  Catabolite activator protein: DNA binding and transcription activation. , 2004, Current opinion in structural biology.

[187]  N. Glansdorff,et al.  Molecular interactions in the control region of the carAB operon encoding Escherichia coli carbamoylphosphate synthetase. , 1988, Journal of molecular biology.

[188]  P. Bouloc,et al.  Genome-wide relationship between R-loop formation and antisense transcription in Escherichia coli , 2018, Nucleic acids research.

[189]  Stefan Klumpp,et al.  A Model for Sigma Factor Competition in Bacterial Cells , 2014, PLoS Comput. Biol..

[190]  M. Schmidt,et al.  DNA adenine methylation and bacterial pathogenesis. , 2007, International journal of medical microbiology : IJMM.

[191]  Akira Ishihama,et al.  Mode of action of the TyrR protein: repression and activation of the tyrP promoter of Escherichia coli , 2004, Molecular microbiology.

[192]  Yohei Yokobayashi,et al.  Engineering complex riboswitch regulation by dual genetic selection. , 2008, Journal of the American Chemical Society.

[193]  J. Mukhopadhyay,et al.  Functional roles of the two cyclic AMP‐dependent forms of cyclic AMP receptor protein from Escherichia coli , 1999, FEBS letters.

[194]  Peter Ruhdal Jensen,et al.  Synthetic promoter libraries for Corynebacterium glutamicum , 2014, Applied Microbiology and Biotechnology.

[195]  Krešimir Josić,et al.  Tuning the dynamic range of bacterial promoters regulated by ligand-inducible transcription factors , 2018, Nature Communications.

[196]  Y. Nakamura,et al.  Arginine regulon of Escherichia coli K-12. A study of repressor-operator interactions and of in vitro binding affinities versus in vivo repression. , 1992, Journal of molecular biology.

[197]  R. Breaker,et al.  Bacterial riboswitches cooperatively bind Ni(2+) or Co(2+) ions and control expression of heavy metal transporters. , 2015, Molecular cell.

[198]  S. Gottesman,et al.  Competition among Hfq‐binding small RNAs in Escherichia coli , 2011, Molecular microbiology.

[199]  J. Vorholt,et al.  Extra Cytoplasmic Function sigma factors, recent structural insights into promoter recognition and regulation. , 2015, Current opinion in structural biology.

[200]  David K. Karig,et al.  Multi-Input Regulation and Logic with T7 Promoters in Cells and Cell-Free Systems , 2013, PloS one.

[201]  A. D. de Koning,et al.  Effects of Fis on Escherichia coli gene expression during different growth stages. , 2007, Microbiology.

[202]  Madhavi Vuthoori,et al.  Transcriptional takeover by sigma appropriation: remodelling of the sigma70 subunit of Escherichia coli RNA polymerase by the bacteriophage T4 activator MotA and co-activator AsiA. , 2005, Microbiology.

[203]  M. W. van der Woude Phase variation: how to create and coordinate population diversity. , 2011, Current opinion in microbiology.

[204]  T. Henkin,et al.  The T box mechanism: tRNA as a regulatory molecule , 2010, FEBS letters.

[205]  D. Dougan,et al.  Proteolytic regulation of stress response pathways in Escherichia coli. , 2013, Sub-cellular biochemistry.

[206]  R. Barrangou,et al.  CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. , 2011, Annual review of genetics.

[207]  M. Merrick,et al.  In a class of its own — the RNA polymerase sigma factor σ;54 (σN) , 1993 .

[208]  K Nadassy,et al.  Structural features of protein-nucleic acid recognition sites. , 1999, Biochemistry.

[209]  C. V. Rao,et al.  Continuous control of flagellar gene expression by the σ28–FlgM regulatory circuit in Salmonella enterica , 2011, Molecular microbiology.

[210]  R. Ebright,et al.  Structural Basis of Transcription Initiation , 2012, Science.

[211]  S. Altuvia,et al.  Alternative mRNA structures of the cIII gene of bacteriophage lambda determine the rate of its translation initiation. , 1989, Journal of molecular biology.

[212]  R. Murray,et al.  Design of a Toolbox of RNA Thermometers. , 2017, ACS synthetic biology.

[213]  N. Majdalani,et al.  Stress sigma factor RpoS degradation and translation are sensitive to the state of central metabolism , 2015, Proceedings of the National Academy of Sciences.

[214]  W. Maas The regulation of arginine biosynthesis: its contribution to understanding the control of gene expression. , 1991, Genetics.

[215]  RsmV, a Small Noncoding Regulatory RNA in Pseudomonas aeruginosa That Sequesters RsmA and RsmF from Target mRNAs , 2018, Journal of bacteriology.

[216]  J. Calvo,et al.  Leucine-induced dissociation of Escherichia coli Lrp hexadecamers to octamers. , 2002, Journal of molecular biology.

[217]  F. Grosveld,et al.  Regulation of Transcription , 2007 .

[218]  E. Schreiter,et al.  Ribbon–helix–helix transcription factors: variations on a theme , 2007, Nature Reviews Microbiology.

[219]  D. Lafontaine,et al.  Cyclic Di-GMP Riboswitch-Regulated Type IV Pili Contribute to Aggregation of Clostridium difficile , 2014, Journal of bacteriology.

[220]  J. Power,et al.  Positive Control of Enzyme Synthesis by Gene C in the l-Arabinose System , 1965, Journal of bacteriology.

[221]  Patrick D Curtis,et al.  DNA methyltransferases and epigenetic regulation in bacteria. , 2016, FEMS microbiology reviews.

[222]  J. R.,et al.  Quantitative analysis , 1892, Nature.

[223]  A. Stevens An inhibitor of host sigma-stimulated core enzyme activity that purifies with DNA-dependent RNA polymerase of E. coli following T4 phage infection. , 1973, Biochemical and biophysical research communications.

[224]  J. Hoch,et al.  Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay , 1991, Cell.

[225]  H. Schwalbe,et al.  Translation on demand by a simple RNA-based thermosensor , 2010, Nucleic acids research.

[226]  Kay Hamacher,et al.  Riboswitching with ciprofloxacin—development and characterization of a novel RNA regulator , 2018, Nucleic acids research.

[227]  S. Gottesman,et al.  Multiple pathways for regulation of σS (RpoS) stability in Escherichia coli via the action of multiple anti‐adaptors , 2008, Molecular microbiology.

[228]  Y. Seok,et al.  HPr antagonizes the anti-σ70 activity of Rsd in Escherichia coli , 2013, Proceedings of the National Academy of Sciences.

[229]  John W. Foster,et al.  DksA A Critical Component of the Transcription Initiation Machinery that Potentiates the Regulation of rRNA Promoters by ppGpp and the Initiating NTP , 2004, Cell.

[230]  D. Gigot,et al.  Purine and pyrimidine-specific repression of the Escherichia coli carAB operon are functionally and structurally coupled. , 2004, Journal of molecular biology.

[231]  Krešimir Josić,et al.  The Timing of Transcriptional Regulation in Synthetic Gene Circuits. , 2017, ACS synthetic biology.

[232]  Structural and kinetic insights into stimulation of RppH-dependent RNA degradation by the metabolic enzyme DapF , 2018, Nucleic acids research.

[233]  A. Ishihama,et al.  RutR is the uracil/thymine‐sensing master regulator of a set of genes for synthesis and degradation of pyrimidines , 2007, Molecular microbiology.

[234]  R. Dickerson,et al.  Hin recombinase bound to DNA: the origin of specificity in major and minor groove interactions. , 1994, Science.

[235]  P. Babitzke Regulation of transcription attenuation and translation initiation by allosteric control of an RNA-binding protein: the Bacillus subtilis TRAP protein. , 2004, Current opinion in microbiology.

[236]  V. Ramakrishnan,et al.  Ribosome Structure and the Mechanism of Translation , 2002, Cell.

[237]  J. Greenblatt,et al.  Transcriptional antitermination , 1993, Nature.

[238]  J. Collins,et al.  Construction of a genetic toggle switch in Escherichia coli , 2000, Nature.

[239]  J. Greenblatt,et al.  The nut site of bacteriophage lambda is made of RNA and is bound by transcription antitermination factors on the surface of RNA polymerase. , 1991, Genes & development.

[240]  A. Jaramillo,et al.  Genetically engineered light sensors for control of bacterial gene expression , 2011, Biotechnology journal.

[241]  S. Gottesman,et al.  Modulating RssB activity: IraP, a novel regulator of sigma(S) stability in Escherichia coli. , 2006, Genes & development.

[242]  V. de Lorenzo,et al.  In Vivo and In Vitro Effects of (p)ppGpp on the ς54 Promoter Pu of the TOL Plasmid ofPseudomonas putida , 2000, Journal of bacteriology.

[243]  A. Ellington,et al.  Construction of synthetic T7 RNA polymerase expression systems. , 2018, Methods.

[244]  J. A. Halliday,et al.  DksA and ppGpp Regulate the σS Stress Response by Activating Promoters for the Small RNA DsrA and the Anti-Adapter Protein IraP , 2017, Journal of bacteriology.

[245]  Emily F. Ruff,et al.  E. coli RNA Polymerase Determinants of Open Complex Lifetime and Structure. , 2015, Journal of molecular biology.

[246]  M. Paget Bacterial Sigma Factors and Anti-Sigma Factors: Structure, Function and Distribution , 2015, Biomolecules.

[247]  S. d'Auria,et al.  Molecular interactions. , 1978, Science.

[248]  A. Correspondent Translational repression , 2020, Nature.

[249]  O. Amster-Choder,et al.  Modulation of the dimerization of a transcriptional antiterminator protein by phosphorylation. , 1992, Science.

[250]  K. Murakami,et al.  Differential regulation by ppGpp versus pppGpp in Escherichia coli , 2013, Nucleic acids research.

[251]  R. Gourse,et al.  Advances in bacterial promoter recognition and its control by factors that do not bind DNA , 2008, Nature Reviews Microbiology.

[252]  R. Zhou,et al.  BofA protein inhibits intramembrane proteolysis of pro-sigmaK in an intercompartmental signaling pathway during Bacillus subtilis sporulation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[253]  D. Gigot,et al.  Mutational analysis of Escherichia coli PepA, a multifunctional DNA-binding aminopeptidase. , 2000, Journal of molecular biology.

[254]  K. Wassarman 6S RNA: a regulator of transcription , 2007, Molecular microbiology.

[255]  H. van Tilbeurgh,et al.  Structural insights into the regulation of bacterial signalling proteins containing PRDs. , 2001, Current opinion in structural biology.

[256]  Shane C. Dillon,et al.  Bacterial nucleoid-associated proteins, nucleoid structure and gene expression , 2010, Nature Reviews Microbiology.

[257]  Pamela A. Silver,et al.  Making Cellular Memories , 2010, Cell.

[258]  C. Dorman,et al.  Coupling of Escherichia coli hns mRNA levels to DNA synthesis by autoregulation: implications for growth phase control , 1995, Molecular microbiology.

[259]  V. Bidnenko,et al.  Transcription termination factor Rho: a hub linking diverse physiological processes in bacteria. , 2016, Microbiology.

[260]  M. W. Woude,et al.  Evidence for global regulatory control of pilus expression in Escherichia coli by Lrp and DNA methylation: model building based on analysis of pap , 1992, Molecular microbiology.

[261]  M. Inui,et al.  OxyR acts as a transcriptional repressor of hydrogen peroxide‐inducible antioxidant genes in Corynebacterium glutamicum R , 2013, The FEBS journal.

[262]  Christopher A. Vakulskas,et al.  Global role of the bacterial post-transcriptional regulator CsrA revealed by integrated transcriptomics , 2017, Nature Communications.

[263]  Roland K. Hartmann,et al.  6S RNA – an ancient regulator of bacterial RNA polymerase rediscovered , 2005, Biological chemistry.

[264]  P. Babitzke,et al.  Translational Repression of the RpoS Antiadapter IraD by CsrA Is Mediated via Translational Coupling to a Short Upstream Open Reading Frame , 2017, mBio.

[265]  G. Storz,et al.  Small Toxic Proteins and the Antisense RNAs That Repress Them , 2008, Microbiology and Molecular Biology Reviews.

[266]  J. Calvo,et al.  The leucine-responsive regulatory protein, a global regulator of metabolism in Escherichia coli , 1994, Microbiological reviews.

[267]  M. Hecker,et al.  SigB-dependent general stress response in Bacillus subtilis and related gram-positive bacteria. , 2007, Annual review of microbiology.

[268]  A. J. Carpousis The RNA degradosome of Escherichia coli: an mRNA-degrading machine assembled on RNase E. , 2007, Annual review of microbiology.

[269]  C. Yanofsky,et al.  Reconstitution of Bacillus subtilis trp attenuation in vitro with TRAP, the trp RNA-binding attenuation protein. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[270]  T. Wiegert,et al.  Regulated intramembrane proteolysis in the control of extracytoplasmic function sigma factors. , 2009, Research in microbiology.

[271]  N. Glansdorff,et al.  DNA sequence of the carA gene and the control region of carAB: tandem promoters, respectively controlled by arginine and the pyrimidines, regulate the synthesis of carbamoyl-phosphate synthetase in Escherichia coli K-12. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[272]  C. Marco-Marín,et al.  First-time crystallization and preliminary X-ray crystallographic analysis of a bacterial-archaeal type UMP kinase, a key enzyme in microbial pyrimidine biosynthesis. , 2005, Biochimica et biophysica acta.

[273]  R. Wagner,et al.  Structural Basis for H-NS-mediated Trapping of RNA Polymerase in the Open Initiation Complex at the rrnB P1* , 2002, The Journal of Biological Chemistry.

[274]  J. Park,et al.  Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs , 2013, Nature Biotechnology.

[275]  Peter Ruhdal Jensen,et al.  Modulation of Gene Expression Made Easy , 2002, Applied and Environmental Microbiology.

[276]  H. Margalit,et al.  Accessibility and Evolutionary Conservation Mark Bacterial Small-RNA Target-Binding Regions , 2011, Journal of bacteriology.

[277]  Vijai Singh,et al.  Recent advancements in synthetic biology: current status and challenges. , 2014, Gene.

[278]  A. Serganov,et al.  A Novel RNA Phosphorylation State Enables 5' End-Dependent Degradation in Escherichia coli. , 2017, Molecular cell.

[279]  B. Görke,et al.  Regulation of the Escherichia coli Antiterminator Protein BglG by Phosphorylation at Multiple Sites and Evidence for Transfer of Phosphoryl Groups between Monomers* , 2003, Journal of Biological Chemistry.

[280]  S. Normark,et al.  Transcriptional activation of a pap pilus virulence operon from uropathogenic Escherichia coli. , 1985, The EMBO journal.

[281]  A. Ellington,et al.  Directed Evolution of a Panel of Orthogonal T7 RNA Polymerase Variants for in Vivo or in Vitro Synthetic Circuitry. , 2015, ACS synthetic biology.

[282]  T. Nyström,et al.  RpoS-dependent Promoters Require Guanosine Tetraphosphate for Induction Even in the Presence of High Levels of ςs * , 2000, The Journal of Biological Chemistry.

[283]  R. Brennan The winged-helix DNA-binding motif: Another helix-turn-helix takeoff , 1993, Cell.

[284]  H. Nelson,et al.  Structure and function of DNA-binding proteins. , 1995, Current opinion in genetics & development.

[285]  M. Lynch,et al.  The bioenergetic costs of a gene , 2015, Proceedings of the National Academy of Sciences.

[286]  M. Koffas,et al.  Microbial production of natural and non-natural flavonoids: Pathway engineering, directed evolution and systems/synthetic biology. , 2016, Biotechnology advances.

[287]  S. Gottesman,et al.  The RssB response regulator directly targets sigma(S) for degradation by ClpXP. , 2001, Genes & development.

[288]  M. Inouye,et al.  Signal transduction via the histidyl‐aspartyl phosphorelay , 1997, Genes to cells : devoted to molecular & cellular mechanisms.

[289]  Jong-il Choi,et al.  Engineered microbial biosensors based on bacterial two-component systems as synthetic biotechnology platforms in bioremediation and biorefinery , 2017, Microbial Cell Factories.

[290]  J. Vorholt,et al.  Sigma factor mimicry involved in regulation of general stress response , 2009, Proceedings of the National Academy of Sciences.

[291]  P. Stragier,et al.  Multiple regulatory signals in the control region of the Escherichia coli carAB operon. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[292]  Mario Mörl,et al.  Synthetic Riboswitches: From Plug and Pray toward Plug and Play. , 2017, Biochemistry.

[293]  J. Bradner,et al.  DNA-bend modulation in a repressor-to-activator switching mechanism , 1995, Nature.

[294]  Thijs J. G. Ettema,et al.  The Lrp family of transcriptional regulators , 2003, Molecular microbiology.

[295]  E. Groisman,et al.  Making informed decisions: regulatory interactions between two-component systems. , 2003, Trends in microbiology.

[296]  M. Inouye,et al.  Transcription Regulation of ompF and ompC by a Single Transcription Factor, OmpR* , 2006, Journal of Biological Chemistry.

[297]  E. Pérez-Rueda,et al.  The Repertoire of DNA-Binding Transcription Factors in Prokaryotes: Functional and Evolutionary Lessons , 2012, Science progress.

[298]  J. Casadesús Bacterial DNA Methylation and Methylomes. , 2016, Advances in experimental medicine and biology.

[299]  Rob Phillips,et al.  Tuning Promoter Strength through RNA Polymerase Binding Site Design in Escherichia coli , 2012, PLoS Comput. Biol..

[300]  C. Gross,et al.  Multiple sigma subunits and the partitioning of bacterial transcription space. , 2003, Annual review of microbiology.

[301]  I. Artsimovitch,et al.  Termination and antitermination: RNA polymerase runs a stop sign , 2011, Nature Reviews Microbiology.

[302]  M. Melichercik,et al.  Binding-competent states for L-arginine in E. coli arginine repressor apoprotein , 2014, Journal of Molecular Modeling.

[303]  C. Gross,et al.  Reduced capacity of alternative sigmas to melt promoters ensures stringent promoter recognition. , 2009, Genes & development.

[304]  J. Chin,et al.  A network of orthogonal ribosome·mRNA pairs , 2005, Nature chemical biology.

[305]  N. Majdalani,et al.  H-NS Regulation of IraD and IraM Antiadaptors for Control of RpoS Degradation , 2012, Journal of bacteriology.

[306]  D. Charlier,et al.  Competitive activation of the Escherichia coli argO gene coding for an arginine exporter by the transcriptional regulators Lrp and ArgP , 2009, Molecular microbiology.

[307]  S. Gottesman,et al.  Bacterial Small RNA-based Negative Regulation: Hfq and Its Accomplices* , 2013, The Journal of Biological Chemistry.

[308]  G. Mittenhuber An inventory of genes encoding RNA polymerase sigma factors in 31 completely sequenced eubacterial genomes. , 2002, Journal of molecular microbiology and biotechnology.

[309]  J. Stülke,et al.  Trigger enzymes: bifunctional proteins active in metabolism and in controlling gene expression , 2007, Molecular microbiology.

[310]  C. Turnbough,et al.  Regulation of gene expression by reiterative transcription. , 2011, Current opinion in microbiology.

[311]  C. Yanofsky,et al.  The Anti-trp RNA-binding Attenuation Protein (Anti-TRAP), AT, Recognizes the Tryptophan-activated RNA Binding Domain of the TRAP Regulatory Protein* , 2002, The Journal of Biological Chemistry.

[312]  R. Landick,et al.  Mechanisms of Bacterial Transcription Termination: All Good Things Must End. , 2016, Annual review of biochemistry.

[313]  Peter F. Hallin,et al.  Genome update: sigma factors in 240 bacterial genomes. , 2005, Microbiology.

[314]  Nan Qin,et al.  Extraordinary expansion of a Sorangium cellulosum genome from an alkaline milieu , 2013, Scientific Reports.

[315]  R. Dixon,et al.  The Role of Bacterial Enhancer Binding Proteins as Specialized Activators of σ54-Dependent Transcription , 2012, Microbiology and Molecular Reviews.

[316]  E. Newman,et al.  Leucine-responsive regulatory protein: a global regulator of gene expression in E. coli. , 1995, Annual review of microbiology.

[317]  C. Dorman,et al.  DNA relaxation‐dependent phase biasing of the fim genetic switch in Escherichia coli depends on the interplay of H‐NS, IHF and LRP , 2009, Molecular microbiology.

[318]  S. Butcher,et al.  Direct interactions between the coiled-coil tip of DksA and the trigger loop of RNA polymerase mediate transcriptional regulation. , 2012, Genes & development.

[319]  Ralph Bertram,et al.  The application of Tet repressor in prokaryotic gene regulation and expression , 2007, Microbial biotechnology.

[320]  D. Pettijohn,et al.  Interaction of the Escherichia coli HU protein with DNA. Evidence for formation of nucleosome-like structures with altered DNA helical pitch. , 1986, Journal of molecular biology.

[321]  A. Khodursky,et al.  Adaptation to famine: A family of stationary-phase genes revealed by microarray analysis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[322]  Faiza Hussain,et al.  Modular, Multi-Input Transcriptional Logic Gating with Orthogonal LacI/GalR Family Chimeras , 2014, ACS synthetic biology.

[323]  D. Maes,et al.  Insights into the architecture and stoichiometry of Escherichia coli PepA•DNA complexes involved in transcriptional control and site-specific DNA recombination by atomic force microscopy , 2009, Nucleic acids research.

[324]  A. Ribeiro,et al.  Effects of σ factor competition are promoter initiation kinetics dependent. , 2016, Biochimica et biophysica acta.

[325]  G. Stan,et al.  Burden-driven feedback control of gene expression , 2017, Nature Methods.

[326]  Jörg Stülke,et al.  Activation of Escherichia coli antiterminator BglG requires its phosphorylation , 2012, Proceedings of the National Academy of Sciences.

[327]  J. Helmann The extracytoplasmic function (ECF) sigma factors. , 2002, Advances in microbial physiology.

[328]  J. Collins,et al.  Toehold Switches: De-Novo-Designed Regulators of Gene Expression , 2014, Cell.

[329]  M. Freundlich,et al.  Lrp binds to two regions in the dadAX promoter region of Escherichia coli to repress and activate transcription directly , 1999, Molecular Microbiology.

[330]  R. Burgess,et al.  Key features of σS required for specific recognition by Crl, a transcription factor promoting assembly of RNA polymerase holoenzyme , 2013, Proceedings of the National Academy of Sciences.

[331]  Irma Martínez-Flores,et al.  Anti-Sigma Factors in E. coli: Common Regulatory Mechanisms Controlling Sigma Factors Availability , 2013, Current genomics.

[332]  Ahmad S. Khalil,et al.  Synthetic biology: applications come of age , 2010, Nature Reviews Genetics.

[333]  Drew Endy,et al.  A survey of enabling technologies in synthetic biology , 2013, Journal of biological engineering.

[334]  V. Jooste,et al.  The HU Regulon Is Composed of Genes Responding to Anaerobiosis, Acid Stress, High Osmolarity and SOS Induction , 2009, PloS one.

[335]  E. Nudler,et al.  RNA polymerase and the ribosome: the close relationship. , 2013, Current opinion in microbiology.

[336]  A. Seshasayee,et al.  Nucleoid-Associated Proteins: Genome Level Occupancy and Expression Analysis. , 2017, Methods in molecular biology.

[337]  Julius B. Lucks,et al.  A modular strategy for engineering orthogonal chimeric RNA transcription regulators , 2013, Nucleic acids research.

[338]  C. Turnbough,et al.  Effects of transcriptional start site sequence and position on nucleotide-sensitive selection of alternative start sites at the pyrC promoter in Escherichia coli , 1994, Journal of bacteriology.

[339]  P. Dehaseth,et al.  Mechanism of bacterial transcription initiation: RNA polymerase - promoter binding, isomerization to initiation-competent open complexes, and initiation of RNA synthesis. , 2011, Journal of molecular biology.

[340]  J. Greenblatt,et al.  Assembly of transcription elongation complexes containing the N protein of phage lambda and the Escherichia coli elongation factors NusA, NusB, NusG, and S10. , 1991, Genes & development.

[341]  P. V. von Hippel,et al.  The antitermination activity of bacteriophage lambda N protein is controlled by the kinetics of an RNA-looping-facilitated interaction with the transcription complex. , 2008, Journal of molecular biology.

[342]  Drew Endy,et al.  Precise and reliable gene expression via standard transcription and translation initiation elements , 2013, Nature Methods.

[343]  P. Loubière,et al.  The significance of translation regulation in the stress response , 2013, BMC Genomics.

[344]  A. Seshasayee Gene expression homeostasis and chromosome architecture , 2014, Bioarchitecture.

[345]  Sarah Guiziou,et al.  A part toolbox to tune genetic expression in Bacillus subtilis , 2016, Nucleic acids research.

[346]  J. Silberg,et al.  A Split Transcriptional Repressor That Links Protein Solubility to an Orthogonal Genetic Circuit. , 2018, ACS synthetic biology.

[347]  G. W. Hatfield,et al.  Global Gene Expression Profiling in Escherichia coliK12 , 2000, The Journal of Biological Chemistry.

[348]  Sebastian Will,et al.  Design of Artificial Riboswitches as Biosensors , 2017, Sensors.

[349]  Adam J. Meyer,et al.  A ‘resource allocator’ for transcription based on a highly fragmented T7 RNA polymerase , 2014, Molecular systems biology.

[350]  Gi Na Lee,et al.  The impact of synthetic biology. , 2013, ACS synthetic biology.

[351]  Gang Wu,et al.  Correlation of mRNA Expression and Protein Abundance Affected by Multiple Sequence Features Related to Translational Efficiency in Desulfovibrio vulgaris: A Quantitative Analysis , 2006, Genetics.

[352]  Alan C Cheng,et al.  Recognition of nucleic acid bases and base-pairs by hydrogen bonding to amino acid side-chains. , 2003, Journal of molecular biology.

[353]  E. Marcotte,et al.  Global signatures of protein and mRNA expression levelsw , 2009 .

[354]  Roee Amit,et al.  Increased bending rigidity of single DNA molecules by H-NS, a temperature and osmolarity sensor. , 2003, Biophysical journal.

[355]  Andrea L Edwards,et al.  Riboswitches: structures and mechanisms. , 2011, Cold Spring Harbor perspectives in biology.

[356]  R. Ebright,et al.  DNA-binding determinants of the alpha subunit of RNA polymerase: novel DNA-binding domain architecture. , 1996, Genes & development.

[357]  B. Turcotte,et al.  A Fungal Family of Transcriptional Regulators: the Zinc Cluster Proteins , 2006, Microbiology and Molecular Biology Reviews.

[358]  Y. Quentin,et al.  Two-component systems in Pseudomonas aeruginosa: why so many? , 2000, Trends in microbiology.

[359]  T. D. Schneider,et al.  Redox-dependent shift of OxyR-DNA contacts along an extended DNA-binding site: A mechanism for differential promoter selection , 1994, Cell.

[360]  D. Charlier,et al.  The trigger enzyme PepA (aminopeptidase A) of Escherichia coli, a transcriptional repressor that generates positive supercoiling , 2016, FEBS letters.

[361]  Brian D Sharon,et al.  Bacterial sigma factors: a historical, structural, and genomic perspective. , 2014, Annual review of microbiology.

[362]  D. Gigot,et al.  Pyrimidine regulation of the Escherichia coli and Salmonella typhimurium carAB operons: CarP and integration host factor (IHF) modulate the methylation status of a GATC site present in the control region. , 1995, Journal of molecular biology.

[363]  E. Groisman,et al.  Learning from the Leaders: Gene Regulation by the Transcription Termination Factor Rho. , 2016, Trends in biochemical sciences.

[364]  Edgardo Ugalde,et al.  Regulatory dynamics of standard two-component systems in bacteria. , 2010, Journal of theoretical biology.

[365]  D. Charlier,et al.  The Lrp Family of Transcription Regulators in Archaea , 2010, Archaea.

[366]  W. Maas The potential for the formation of the arginine biosynthetic enzymes and its masking during evolution. , 2007, BioEssays : news and reviews in molecular, cellular and developmental biology.

[367]  N. Glansdorff,et al.  On the role of the Escherichia coli integration host factor (IHF) in repression at a distance of the pyrimidine specific promoter P1 of the carAB operon. , 1994, Biochimie.

[368]  V. Lamour,et al.  Crystal Structure of the Escherichia coli Regulator of σ70, Rsd, in Complex with σ70 Domain 4 , 2007 .

[369]  Jeffry D. Sander,et al.  CRISPR-Cas systems for editing, regulating and targeting genomes , 2014, Nature Biotechnology.

[370]  G. Storz,et al.  Activation of the OxyR transcription factor by reversible disulfide bond formation. , 1998, Science.

[371]  J. Y. Lee,et al.  Regulation of transcription from two ssrS promoters in 6S RNA biogenesis , 2013, Molecules and cells.

[372]  M. Grunberg‐Manago,et al.  Autogenous control of Escherichia coli threonyl-tRNA synthetase expression in vivo. , 1985, Journal of molecular biology.

[373]  C. Peano,et al.  Characterization of the Escherichia coli σS core regulon by Chromatin Immunoprecipitation-sequencing (ChIP-seq) analysis , 2015, Scientific Reports.

[374]  V. Rubio,et al.  Ligand binding specificity of RutR, a member of the TetR family of transcription regulators in Escherichia coli , 2015, FEBS open bio.

[375]  J. Collado-Vides,et al.  Structural Properties of Prokaryotic Promoter Regions Correlate with Functional Features , 2014, PloS one.

[376]  Clémentine Dressaire,et al.  Linear covariance models to examine the determinants of protein levels in Lactococcus lactis. , 2010, Molecular bioSystems.

[377]  S. Gottesman,et al.  Anti-adaptors provide multiple modes for regulation of the RssB adaptor protein , 2013, Genes & development.

[378]  V. Shingler,et al.  Regulation of alternative sigma factor use. , 2011, Annual review of microbiology.

[379]  S. Barik,et al.  An antitermination protein engages the elongating transcription apparatus at a promoter-proximal recognition site , 1987, Cell.

[380]  Shigeyuki Yokoyama,et al.  Regulation through the Secondary Channel—Structural Framework for ppGpp-DksA Synergism during Transcription , 2004, Cell.

[381]  Andrew Wright,et al.  A bacterial gene involved in transcription antitermination: Regulation at a rho-independent terminator in the bgl operon of E. coli , 1987, Cell.

[382]  Phoebe A Rice,et al.  Crystal Structure of an IHF-DNA Complex: A Protein-Induced DNA U-Turn , 1996, Cell.

[383]  Nan Zhang,et al.  Structures of the RNA polymerase-σ54 reveal new and conserved regulatory strategies , 2015, Science.

[384]  J. Chin,et al.  Synthesis of orthogonal transcription-translation networks , 2009, Proceedings of the National Academy of Sciences.

[385]  V. Scarlato,et al.  A Novel Phase Variation Mechanism in the Meningococcus Driven by a Ligand-Responsive Repressor and Differential Spacing of Distal Promoter Elements , 2009, PLoS pathogens.

[386]  S. Yokoyama,et al.  Structural basis for promoter specificity switching of RNA polymerase by a phage factor , 2014, Genes & development.

[387]  Wei Li,et al.  The Role of zinc in the disulphide stress-regulated anti-sigma factor RsrA from Streptomyces coelicolor. , 2003, Journal of molecular biology.

[388]  J. Monod,et al.  [Genes of structure and genes of regulation in the biosynthesis of proteins]. , 1959, Comptes rendus hebdomadaires des seances de l'Academie des sciences.

[389]  D. Gigot,et al.  carP, involved in pyrimidine regulation of the Escherichia coli carbamoylphosphate synthetase operon encodes a sequence-specific DNA-binding protein identical to XerB and PepA, also required for resolution of ColEI multimers. , 1995, Journal of molecular biology.

[390]  K. Mortensen,et al.  Macromolecular Mimicry in Translation Initiation: A Model for the Initiation Factor IF2 on the Ribosome , 2000, IUBMB life.

[391]  Gijs J. L. Wuite,et al.  Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation , 2006, Nature.

[392]  C. Wolz,et al.  The synthesis and function of the alarmone (p)ppGpp in firmicutes. , 2010, International journal of medical microbiology : IJMM.

[393]  W. Wooster,et al.  Crystal structure of , 2005 .

[394]  Jens Nielsen,et al.  Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals. , 2015, Biotechnology advances.

[395]  V. Rubio,et al.  The mechanism of signal transduction by two-component systems. , 2010, Current opinion in structural biology.

[396]  I. Blomfield The regulation of pap and type 1 fimbriation in Escherichia coli. , 2001, Advances in microbial physiology.

[397]  M. di Bernardo,et al.  An Orthogonal Multi-input Integration System to Control Gene Expression in Escherichia coli. , 2017, ACS synthetic biology.

[398]  Do Soon Kim,et al.  Repurposing ribosomes for synthetic biology. , 2017, Current opinion in chemical biology.

[399]  P. Nilsson,et al.  Mutations affecting mRNA processing and fimbrial biogenesis in the Escherichia coli pap operon , 1996, Journal of bacteriology.

[400]  P. Nilsson,et al.  Differential decay of a polycistronic Escherichia coli transcript is initiated by RNaseE‐dependent endonucleolytic processing , 1991, Molecular microbiology.

[401]  D. Low,et al.  Roles of DNA Adenine Methylation in Regulating Bacterial Gene Expression and Virulence , 2001, Infection and Immunity.

[402]  Jo Maertens,et al.  Tailor-made transcriptional biosensors for optimizing microbial cell factories , 2017, Journal of Industrial Microbiology & Biotechnology.

[403]  John Love,et al.  Synthetic promoter design for new microbial chassis , 2016, Biochemical Society transactions.

[404]  A. Arkin,et al.  Sequestration-based bistability enables tuning of the switching boundaries and design of a latch , 2012, Molecular systems biology.

[405]  K. I. Sørensen,et al.  Nucleotide pool-sensitive selection of the transcriptional start site in vivo at the Salmonella typhimurium pyrC and pyrD promoters , 1993, Journal of bacteriology.

[406]  F. Narberhaus,et al.  Design of a Temperature-Responsive Transcription Terminator. , 2017, ACS synthetic biology.

[407]  Melanie B. Berkmen,et al.  rRNA Promoter Regulation by Nonoptimal Binding of σ Region 1.2: An Additional Recognition Element for RNA Polymerase , 2006, Cell.

[408]  W. Gilbert,et al.  ISOLATION OF THE LAC REPRESSOR , 1966, Proceedings of the National Academy of Sciences of the United States of America.

[409]  M. Inouye,et al.  micF RNA in ompB mutants of Escherichia coli: different pathways regulate micF RNA levels in response to osmolarity and temperature change , 1990, Journal of bacteriology.

[410]  M. W. Woude Phase variation: how to create and coordinate population diversity , 2011 .

[411]  Prashant Mali,et al.  Orthogonal Cas9 Proteins for RNA-Guided Gene Regulation and Editing , 2013, Nature Methods.

[412]  H. Šanderová,et al.  Rapid changes in gene expression: DNA determinants of promoter regulation by the concentration of the transcription initiating NTP in Bacillus subtilis , 2011, Nucleic acids research.

[413]  M. Grunberg‐Manago,et al.  Genetic definition of the translational operator of the threonine-tRNA ligase gene in Escherichia coli. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[414]  K. Swinger,et al.  IHF and HU: flexible architects of bent DNA. , 2004, Current opinion in structural biology.

[415]  Yinjie J. Tang,et al.  Metabolic Burden: Cornerstones in Synthetic Biology and Metabolic Engineering Applications. , 2016, Trends in biotechnology.

[416]  Kathryn D. Smith,et al.  Structural basis of differential ligand recognition by two classes of bis-(3′-5′)-cyclic dimeric guanosine monophosphate-binding riboswitches , 2011, Proceedings of the National Academy of Sciences.

[417]  K. Hughes,et al.  Flk prevents premature secretion of the anti‐σ factor FlgM into the periplasm , 2006 .

[418]  M. Susskind,et al.  Target of the transcriptional activation function of phage lambda cI protein. , 1994, Science.

[419]  Xiao Liang,et al.  Integrating T7 RNA Polymerase and Its Cognate Transcriptional Units for a Host-Independent and Stable Expression System in Single Plasmid. , 2018, ACS synthetic biology.

[420]  C. Gross,et al.  Views of Transcription Initiation , 2002, Cell.

[421]  S. Busby,et al.  Activating transcription in bacteria. , 2012, Annual review of microbiology.

[422]  L. Reitzer,et al.  Metabolic Context and Possible Physiological Themes of ς54-Dependent Genes in Escherichia coli , 2001, Microbiology and Molecular Biology Reviews.

[423]  J. Greenblatt,et al.  A protein-RNA interaction network facilitates the template-independent cooperative assembly on RNA polymerase of a stable antitermination complex containing the lambda N protein. , 1995, Genes & development.

[424]  M. Inouye,et al.  Toxins of Prokaryotic Toxin-Antitoxin Systems with Sequence-Specific Endoribonuclease Activity , 2017, Toxins.

[425]  E. Walshaw,et al.  A systematic approach , 2018, BDJ.

[426]  R. Gourse,et al.  Control of rRNA expression by small molecules is dynamic and nonredundant. , 2003, Molecular cell.

[427]  Sarah E. Ades,et al.  Control of the alternative sigma factor σE in Escherichia coli , 2004 .

[428]  Alicia N. Schep,et al.  Genome-Wide Transcriptional Response to Varying RpoS Levels in Escherichia coli K-12 , 2016, bioRxiv.

[429]  D. Gigot,et al.  pyrH-encoded UMP-kinase directly participates in pyrimidine-specific modulation of promoter activity in Escherichia coli. , 1998, Journal of molecular biology.

[430]  N. Kleckner,et al.  Mechanism and regulation of Tn10 transposition. , 1984, Cold Spring Harbor symposia on quantitative biology.

[431]  N. Majdalani,et al.  The RpoS-mediated general stress response in Escherichia coli. , 2011, Annual review of microbiology.

[432]  C. Turnbough,et al.  Regulation of pyrBI operon expression in Escherichia coli by UTP-sensitive reiterative RNA synthesis during transcriptional initiation. , 1994, Genes & development.

[433]  Byung-Kwan Cho,et al.  Genome-wide analysis of Fis binding in Escherichia coli indicates a causative role for A-/AT-tracts. , 2008, Genome research.

[434]  A. Ishihama Functional modulation of Escherichia coli RNA polymerase. , 2000, Annual review of microbiology.

[435]  M. Bes,et al.  Redox-Based Transcriptional Regulation in Prokaryotes: Revisiting Model Mechanisms. , 2019, Antioxidants & redox signaling.

[436]  T. Nyström,et al.  ppGpp: a global regulator in Escherichia coli. , 2005, Trends in microbiology.

[437]  Andrew Wright,et al.  Transcriptional antitermination in the bgl operon of E. coli is modulated by a specific RNA binding protein , 1990, Cell.

[438]  N. Glansdorff,et al.  IS3 can function as a mobile promoter in E. coli. , 1982, Nucleic acids research.

[439]  J. Pittard,et al.  The TyrR regulon , 2004, Molecular microbiology.

[440]  Cheemeng Tan,et al.  CRISPR-Cas Expands Dynamic Range of Gene Expression From T7RNAP Promoters. , 2018, Biotechnology journal.

[441]  P. Cary,et al.  Hfq binding changes the structure of Escherichia coli small noncoding RNAs OxyS and RprA, which are involved in the riboregulation of rpoS , 2013, RNA.

[442]  R. Ebright,et al.  Structural basis of transcription activation , 2016, Science.

[443]  Victoria A. Feher,et al.  Two-Component Signal Transduction in Bacillus subtilis: How One Organism Sees Its World , 1999, Journal of bacteriology.

[444]  Alexander P. S. Darlington,et al.  Engineering Translational Resource Allocation Controllers: Mechanistic Models, Design Guidelines, and Potential Biological Implementations , 2018, bioRxiv.

[445]  R. Wagner,et al.  The E. coli Anti-Sigma Factor Rsd: Studies on the Specificity and Regulation of Its Expression , 2011, PloS one.

[446]  L. Aravind,et al.  The many faces of the helix-turn-helix domain : Transcription regulation and beyond q , 2005 .

[447]  W. Maas,et al.  STUDIES ON THE MECHANISM OF REPRESSION OF ARGININE BIOSYNTHESIS IN ESCHERICHIA COLI. II. DOMINANCE OF REPRESSIBILITY IN DIPLOIDS. , 1964, Journal of molecular biology.

[448]  Y. Lu,et al.  Transcriptional attenuation of the Bacillus subtilis pyr operon by the PyrR regulatory protein and uridine nucleotides in vitro , 1996, Journal of bacteriology.

[449]  Enrique Merino,et al.  Lessons from the modular organization of the transcriptional regulatory network of Bacillus subtilis , 2013, BMC Systems Biology.

[450]  P. Cossart,et al.  An RNA Thermosensor Controls Expression of Virulence Genes in Listeria monocytogenes , 2002, Cell.

[451]  C. Turnbough,et al.  Translational control of pyrC expression mediated by nucleotide-sensitive selection of transcriptional start sites in Escherichia coli , 1992, Journal of bacteriology.

[452]  G. Mackie RNase E: at the interface of bacterial RNA processing and decay , 2012, Nature Reviews Microbiology.

[453]  J. Neuhard,et al.  Regulation of pyrC expression in Salmonella typhimurium: Identification of a regulatory region , 1988, Molecular and General Genetics MGG.

[454]  K. Matthews,et al.  Lactose repressor protein: functional properties and structure. , 1998, Progress in nucleic acid research and molecular biology.

[455]  L. Lindahl,et al.  Regulation of Ribosomal Protein Synthesis in Vibrio cholerae , 2004, Journal of bacteriology.

[456]  A Klug,et al.  Physical basis of a protein-DNA recognition code. , 1997, Current opinion in structural biology.

[457]  W. Reznikoff,et al.  Transcriptional slippage during the transcription initiation process at a mutant lac promoter in vivo. , 1993, Journal of molecular biology.

[458]  N. Majdalani,et al.  Small non‐coding RNAs, co‐ordinators of adaptation processes in Escherichia coli: the RpoS paradigm , 2003, Molecular microbiology.

[459]  F. Narberhaus,et al.  Exploring the modular nature of riboswitches and RNA thermometers , 2016, Nucleic acids research.

[460]  F. Narberhaus,et al.  Bacterial RNA thermometers: molecular zippers and switches , 2012, Nature Reviews Microbiology.

[461]  L. Lindahl,et al.  Diverse mechanisms for regulating ribosomal protein synthesis in Escherichia coli. , 1994, Progress in nucleic acid research and molecular biology.

[462]  D. Maes,et al.  The protein–DNA contacts in RutR·carAB operator complexes , 2010, Nucleic acids research.

[463]  L. M. Mateos,et al.  Structural snapshots of OxyR reveal the peroxidatic mechanism of H2O2sensing. , 2018 .

[464]  Albert Y. Chen,et al.  Modulation of extracytoplasmic function (ECF) sigma factor promoter selectivity by spacer region sequence , 2017, Nucleic acids research.

[465]  Nucleotide sequence of the carA gene and regulation of the carAB operon in Salmonella typhimurium. , 1988, European journal of biochemistry.

[466]  B. Bigelow,et al.  lambda N antitermination system: functional analysis of phage interactions with the host NusA protein. , 1987, Journal of molecular biology.

[467]  K. Severinov,et al.  Transcription regulation by bacteriophage T4 AsiA. , 2005, Protein expression and purification.

[468]  F. Hildebrand,et al.  Global regulation of gene expression by OxyR in an important human opportunistic pathogen , 2012, Nucleic acids research.

[469]  E. Groisman,et al.  Signal integration in bacterial two-component regulatory systems. , 2008, Genes & development.

[470]  G. Mackie,et al.  Secondary structure of the mRNA for ribosomal protein S20. Implications for cleavage by ribonuclease E. , 1992, The Journal of biological chemistry.

[471]  R. Gourse,et al.  The magic spot: a ppGpp binding site on E. coli RNA polymerase responsible for regulation of transcription initiation. , 2013, Molecular cell.