The Majority of CD45– Ter119– CD31– Bone Marrow Cell Fraction Is of Hematopoietic Origin and Contains Erythroid and Lymphoid Progenitors

[1]  Nicolas F. Fernandez,et al.  Differential cytokine contributions of perivascular haematopoietic stem cell niches , 2017, Nature Cell Biology.

[2]  Susan M. Schlenner,et al.  Hematopoietic Stem Cell Niches Produce Lineage-Instructive Signals to Control Multipotent Progenitor Differentiation. , 2016, Immunity.

[3]  Mauro J. Muraro,et al.  A Single-Cell Transcriptome Atlas of the Human Pancreas , 2016, Cell systems.

[4]  Mauro J. Muraro,et al.  De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data , 2016, Cell stem cell.

[5]  Shuqiang Li,et al.  CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq , 2016, Genome Biology.

[6]  Jocelyn T. Compton,et al.  Gremlin 1 Identifies a Skeletal Stem Cell with Bone, Cartilage, and Reticular Stromal Potential , 2015, Cell.

[7]  D. Sahoo,et al.  Identification and Specification of the Mouse Skeletal Stem Cell , 2015, Cell.

[8]  N. Mohandas,et al.  Isolation and transcriptome analyses of human erythroid progenitors: BFU-E and CFU-E. , 2014, Blood.

[9]  S. Morrison,et al.  Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. , 2014, Cell stem cell.

[10]  Jie Li,et al.  Global transcriptome analyses of human and murine terminal erythroid differentiation. , 2014, Blood.

[11]  Y. Kunisaki,et al.  Osterix marks distinct waves of primitive and definitive stromal progenitors during bone marrow development. , 2014, Developmental cell.

[12]  Jiangwen Zhang,et al.  Ikaros mutation confers integrin-dependent pre-B cell survival and progression to acute lymphoblastic leukemia , 2014, Nature immunology.

[13]  A. Bergman,et al.  Arteriolar niches maintain haematopoietic stem cell quiescence , 2013, Nature.

[14]  I. Macaulay,et al.  Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy , 2013, Nature.

[15]  I. Bruns,et al.  PDGFRα and CD51 mark human Nestin+ sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion , 2013, The Journal of experimental medicine.

[16]  L. De Franceschi,et al.  Quantitative analysis of murine terminal erythroid differentiation in vivo: novel method to study normal and disordered erythropoiesis. , 2013, Blood.

[17]  E. Hsiao,et al.  Activated Gs signaling in osteoblastic cells alters the hematopoietic stem cell niche in mice. , 2012, Blood.

[18]  Charles P. Lin,et al.  Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. , 2012, Cell stem cell.

[19]  Lei Ding,et al.  Endothelial and perivascular cells maintain haematopoietic stem cells , 2011, Nature.

[20]  Harvey F Lodish,et al.  From stem cell to red cell: regulation of erythropoiesis at multiple levels by multiple proteins, RNAs, and chromatin modifications. , 2011, Blood.

[21]  A. Nagler,et al.  CD45 regulates homing and engraftment of immature normal and leukemic human cells in transplanted immunodeficient mice. , 2011, Experimental hematology.

[22]  N. Fujii,et al.  The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. , 2010, Immunity.

[23]  Geert Carmeliet,et al.  Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. , 2010, Developmental cell.

[24]  Ben D. MacArthur,et al.  Mesenchymal and haematopoietic stem cells form a unique bone marrow niche , 2010, Nature.

[25]  Andrew V. Nguyen,et al.  A novel mouse model of inflammatory bowel disease links mammalian target of rapamycin-dependent hyperproliferation of colonic epithelium to inflammation-associated tumorigenesis. , 2010, The American journal of pathology.

[26]  A. Miyawaki,et al.  Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow , 2009, The Journal of experimental medicine.

[27]  D. Sahoo,et al.  Ly6d marks the earliest stage of B-cell specification and identifies the branchpoint between B-cell and T-cell development. , 2009, Genes & development.

[28]  S. Heck,et al.  Resolving the distinct stages in erythroid differentiation based on dynamic changes in membrane protein expression during erythropoiesis , 2009, Proceedings of the National Academy of Sciences.

[29]  I. Weissman,et al.  Endochondral ossification is required for hematopoietic stem cell niche formation , 2008, Nature.

[30]  P. Goichberg,et al.  CD45 regulates retention, motility, and numbers of hematopoietic progenitors, and affects osteoclast remodeling of metaphyseal trabecules , 2008, The Journal of experimental medicine.

[31]  B. Sacchetti,et al.  Self-Renewing Osteoprogenitors in Bone Marrow Sinusoids Can Organize a Hematopoietic Microenvironment , 2007, Cell.

[32]  David Bryder,et al.  Elucidation of the phenotypic, functional, and molecular topography of a myeloerythroid progenitor cell hierarchy. , 2007, Cell stem cell.

[33]  R. Hardy,et al.  The protean nature of cells in the B lymphocyte lineage. , 2007, Immunity.

[34]  T. Nagasawa,et al.  Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. , 2006, Immunity.

[35]  E. Montecino-Rodriguez,et al.  Stromal cell–dependent growth of B-1 B cell progenitors in the absence of direct contact , 2006, Nature Protocols.

[36]  T. Nagasawa Microenvironmental niches in the bone marrow required for B-cell development , 2006, Nature Reviews Immunology.

[37]  U. Klingmüller,et al.  A mouse model for visualization and conditional mutations in the erythroid lineage. , 2004, Blood.

[38]  D. Steindler,et al.  Neural stem and progenitor cells in nestin‐GFP transgenic mice , 2004, The Journal of comparative neurology.

[39]  Mark Coles,et al.  Transgenic mice with hematopoietic and lymphoid specific expression of Cre , 2003, European journal of immunology.

[40]  J. Deng,et al.  The Novel Zinc Finger-Containing Transcription Factor Osterix Is Required for Osteoblast Differentiation and Bone Formation , 2002, Cell.

[41]  P. Marrack,et al.  Observation of antigen-dependent CD8+ T-cell/ dendritic cell interactions in vivo. , 2001, Cellular immunology.

[42]  H. Lodish,et al.  Ineffective erythropoiesis in Stat5a(-/-)5b(-/-) mice due to decreased survival of early erythroblasts. , 2001, Blood.

[43]  Josef M. Penninger,et al.  CD45: new jobs for an old acquaintance , 2001, Nature Immunology.

[44]  I. Weissman,et al.  The monoclonal antibody TER‐119 recognizes a molecule associated with glycophorin A and specifically marks the late stages of murine erythroid lineage , 2000, British journal of haematology.

[45]  T. Winkler,et al.  Precursor B Cell Receptor–Dependent B Cell Proliferation and Differentiation Does Not Require the Bone Marrow or Fetal Liver Environment , 2000, The Journal of experimental medicine.

[46]  E. Rubin,et al.  Transgenic knockout mice with exclusively human sickle hemoglobin and sickle cell disease. , 1997, Science.

[47]  P. Simmons,et al.  Prospective isolation of mesenchymal stem cells from mouse compact bone. , 2009, Methods in molecular biology.

[48]  杉山 立樹 Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches , 2007 .

[49]  I. Trowbridge,et al.  CD45: an emerging role as a protein tyrosine phosphatase required for lymphocyte activation and development. , 1994, Annual review of immunology.

[50]  M. Thomas,et al.  The leukocyte common antigen family. , 1989, Annual review of immunology.

[51]  A. Friedenstein,et al.  Stromal stem cells: marrow-derived osteogenic precursors. , 1988, Ciba Foundation symposium.

[52]  P. Simmons,et al.  Host origin of marrow stromal cells following allogeneic bone marrow transplantation , 1987, Nature.