The Prescribed $Q$-Curvature Flow for Arbitrary Even Dimension in a Critical Case

In this paper, we study the prescribed Q-curvature flow equation on a arbitrary even dimensional closed Riemannian manifold (M, g), which was introduced by S. Brendle in [3], where he proved the flow exists for long time and converges at infinity if the GJMS operator is weakly positive with trivial kernel and ∫ M Qdμ < (n − 1)!Vol (S ). In this paper we study the critical case that ∫ M Qdμ = (n − 1)!Vol (S ), we will prove the convergence of the flow under some geometric hypothesis. In particular, this gives a new proof of Li-Li-Liu’s existence result in [25] in dimensiona 4 and extend the work of Li-Zhu [26] in dimension 2 to general even dimensions. In the proof, we give a explicit expression of the limit of the corresponding energy functional when the blow up occurs.

[1]  S. Brendle Prescribing a higher order conformal invariant on S^n , 2003 .

[2]  S. Brendle Convergence of the Q-curvature flow on S4 , 2006 .

[3]  Olivier Druet,et al.  Bubbling phenomena for fourth-order four-dimensional PDEs with exponential growth , 2005 .

[4]  L. Mason,et al.  Conformally Invariant Powers of the Laplacian, I: Existence , 1992 .

[5]  S. Chang,et al.  Estimates and extremals for zeta function determinants on four-manifolds , 1992 .

[6]  Chiun-Chuan Chen,et al.  Topological degree for a mean field equation on Riemann surfaces , 2003 .

[7]  Juncheng Wei,et al.  Classification of solutions of higher order conformally invariant equations , 1999 .

[8]  A. Fardoun,et al.  Compactness Properties for Geometric Fourth order Elliptic equations with Application to the Q-curvature Flow , 2014, 1405.0024.

[9]  C. B. Ndiaye Topological methods for the resonant Q-curvature problem in arbitrary even dimension , 2019, Journal of Geometry and Physics.

[10]  Jiayu Li,et al.  The Q-curvature on a 4-dimensional Riemannian manifold (M,g) with ∫MQdVg=8π2 , 2012 .

[11]  Simon Brendle,et al.  Convergence of the Yamabe flow for arbitrary initial energy , 2005 .

[12]  L. Fontana Sharp borderline Sobolev inequalities on compact Riemannian manifolds , 1993 .

[13]  Juncheng Wei,et al.  Sharp estimates for bubbling solutions of a fourth order mean field equation , 2007 .

[14]  M. Struwe Curvature flows on surfaces , 2002 .

[15]  M. Struwe A flow approach to Nirenberg's problem , 2005 .

[16]  Jiayu Li,et al.  Solutions for Toda systems on Riemann surfaces , 2005, math/0504384.

[17]  Chang-Shou Lin,et al.  A classification of solutions of a conformally invariant fourth order equation in Rn , 1998 .

[18]  Chiun-Chuan Chen,et al.  Sharp estimates for solutions of multi‐bubbles in compact Riemann surfaces , 2002 .

[19]  P. Feehan,et al.  Łojasiewicz–Simon gradient inequalities for analytic and Morse–Bott functions on Banach spaces , 2015, Journal für die reine und angewandte Mathematik (Crelles Journal).

[20]  C. B. Ndiaye Sharp Estimates for Bubbling Solutions to Some Fourth-Order Geometric Equations , 2016 .

[21]  M. Günther Conformal normal coordinates , 1993 .

[22]  A. Malchiodi,et al.  Q-curvature flow on S^4 , 2006 .

[23]  C. B. Ndiaye Constant Q-curvature metrics in arbitrary dimension , 2007 .

[24]  Jianguo Cao The existence of generalized isothermal coordinates for higher-dimensional Riemannian manifolds , 1991 .

[25]  Z. Djadli O ct 2 00 4 Existence of conformal metrics with constant Q-curvature , 2004 .

[26]  Global existence and convergence for a higher order flow in conformal geometry , 2003, math/0404415.

[27]  Jiayu Li,et al.  The convergence of the mean field type flow at a critical case , 2019, Calculus of Variations and Partial Differential Equations.

[28]  A. Malchiodi Compactness of solutions to some geometric fourth-order equations , 2004, math/0410140.

[29]  M. Gursky The Principal Eigenvalue¶of a Conformally Invariant Differential Operator,¶with an Application to Semilinear Elliptic PDE , 1999 .

[30]  L. Martinazzi,et al.  Classification of solutions to the higher order Liouville ’ s equation on R 2 m , 2009 .

[31]  S. Chang,et al.  Extremal metrics of zeta function determinants on 4-manifolds , 1995 .

[32]  L. Martinazzi Concentration–compactness phenomena in the higher order Liouville's equation☆ , 2008, 0809.2172.

[33]  Jean-Baptiste Casteras A mean field type flow part I: compactness of solutions to a perturbed mean field type equation , 2015 .

[34]  J. Jost,et al.  THE DIFFERENTIAL EQUATION Δu = 8π − 8πheu ON A COMPACT RIEMANN SURFACE , 2018 .

[35]  T. Branson The Functional determinant , 1993 .