The Prescribed $Q$-Curvature Flow for Arbitrary Even Dimension in a Critical Case
暂无分享,去创建一个
[1] S. Brendle. Prescribing a higher order conformal invariant on S^n , 2003 .
[2] S. Brendle. Convergence of the Q-curvature flow on S4 , 2006 .
[3] Olivier Druet,et al. Bubbling phenomena for fourth-order four-dimensional PDEs with exponential growth , 2005 .
[4] L. Mason,et al. Conformally Invariant Powers of the Laplacian, I: Existence , 1992 .
[5] S. Chang,et al. Estimates and extremals for zeta function determinants on four-manifolds , 1992 .
[6] Chiun-Chuan Chen,et al. Topological degree for a mean field equation on Riemann surfaces , 2003 .
[7] Juncheng Wei,et al. Classification of solutions of higher order conformally invariant equations , 1999 .
[8] A. Fardoun,et al. Compactness Properties for Geometric Fourth order Elliptic equations with Application to the Q-curvature Flow , 2014, 1405.0024.
[9] C. B. Ndiaye. Topological methods for the resonant Q-curvature problem in arbitrary even dimension , 2019, Journal of Geometry and Physics.
[10] Jiayu Li,et al. The Q-curvature on a 4-dimensional Riemannian manifold (M,g) with ∫MQdVg=8π2 , 2012 .
[11] Simon Brendle,et al. Convergence of the Yamabe flow for arbitrary initial energy , 2005 .
[12] L. Fontana. Sharp borderline Sobolev inequalities on compact Riemannian manifolds , 1993 .
[13] Juncheng Wei,et al. Sharp estimates for bubbling solutions of a fourth order mean field equation , 2007 .
[14] M. Struwe. Curvature flows on surfaces , 2002 .
[15] M. Struwe. A flow approach to Nirenberg's problem , 2005 .
[16] Jiayu Li,et al. Solutions for Toda systems on Riemann surfaces , 2005, math/0504384.
[17] Chang-Shou Lin,et al. A classification of solutions of a conformally invariant fourth order equation in Rn , 1998 .
[18] Chiun-Chuan Chen,et al. Sharp estimates for solutions of multi‐bubbles in compact Riemann surfaces , 2002 .
[19] P. Feehan,et al. Łojasiewicz–Simon gradient inequalities for analytic and Morse–Bott functions on Banach spaces , 2015, Journal für die reine und angewandte Mathematik (Crelles Journal).
[20] C. B. Ndiaye. Sharp Estimates for Bubbling Solutions to Some Fourth-Order Geometric Equations , 2016 .
[21] M. Günther. Conformal normal coordinates , 1993 .
[22] A. Malchiodi,et al. Q-curvature flow on S^4 , 2006 .
[23] C. B. Ndiaye. Constant Q-curvature metrics in arbitrary dimension , 2007 .
[24] Jianguo Cao. The existence of generalized isothermal coordinates for higher-dimensional Riemannian manifolds , 1991 .
[25] Z. Djadli. O ct 2 00 4 Existence of conformal metrics with constant Q-curvature , 2004 .
[26] Global existence and convergence for a higher order flow in conformal geometry , 2003, math/0404415.
[27] Jiayu Li,et al. The convergence of the mean field type flow at a critical case , 2019, Calculus of Variations and Partial Differential Equations.
[28] A. Malchiodi. Compactness of solutions to some geometric fourth-order equations , 2004, math/0410140.
[29] M. Gursky. The Principal Eigenvalue¶of a Conformally Invariant Differential Operator,¶with an Application to Semilinear Elliptic PDE , 1999 .
[30] L. Martinazzi,et al. Classification of solutions to the higher order Liouville ’ s equation on R 2 m , 2009 .
[31] S. Chang,et al. Extremal metrics of zeta function determinants on 4-manifolds , 1995 .
[32] L. Martinazzi. Concentration–compactness phenomena in the higher order Liouville's equation☆ , 2008, 0809.2172.
[33] Jean-Baptiste Casteras. A mean field type flow part I: compactness of solutions to a perturbed mean field type equation , 2015 .
[34] J. Jost,et al. THE DIFFERENTIAL EQUATION Δu = 8π − 8πheu ON A COMPACT RIEMANN SURFACE , 2018 .
[35] T. Branson. The Functional determinant , 1993 .