Weibel instability with non-Maxwellian distribution functions

The Weibel instability in an unmagnetized plasma is investigated for non-Maxwellian distribution functions. In particular, analytical expressions are derived for the real and imaginary parts of the dielectric constant for the Maxwellian, kappa (κ), and (r,q) distribution functions under the conditions of ξ=ω∕k‖θ‖⪢1 and ⪡1. The real frequency and the growth rate of the instability now depend upon the values of the spectral indices of the distribution functions. In general, the growth rate is suppressed for small values of κ and q (keeping r fixed) and for negative values of r (keeping q fixed) instability transforms into damping. In the limiting cases (i) κ→∞ and (ii) r=0, q→∞, the results approach to the Maxwellian situation.

[1]  G. Murtaza,et al.  Electrostatic potentials and energy loss due to a projectile propagating through a non-Maxwellian dusty plasma , 2006 .

[2]  G. Murtaza,et al.  Parallel Proton Heating in Solar Wind Using Generalized (r, q) Distribution Function , 2006 .

[3]  I. Lerche,et al.  The relativistic kinetic Weibel instability: General arguments and specific illustrations , 2006 .

[4]  R. Schlickeiser,et al.  Covariant kinetic dispersion theory of linear waves in anisotropic plasmas. II. Comparison of covariant and noncovariant growth rates of the nonrelativistic Weibel instability , 2005 .

[5]  P. Norreys,et al.  Observations of the filamentation of high-intensity laser-produced electron beams. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  S. Schwartz,et al.  Parallel propagating electromagnetic modes with the generalized (r,q) distribution function , 2004 .

[7]  G. Murtaza,et al.  Some electrostatic modes based on non-Maxwellian distribution functions , 2004 .

[8]  R. Schlickeiser,et al.  Cosmological Magnetic Field Generation by the Weibel Instability , 2003 .

[9]  M. V. Medvedev,et al.  Interpenetrating Plasma Shells: Near-Equipartition Magnetic Field Generation and Nonthermal Particle Acceleration , 2003, astro-ph/0307500.

[10]  Abraham Loeb,et al.  Generation of Magnetic Fields in the Relativistic Shock of Gamma-Ray Burst Sources , 1999, astro-ph/9904363.

[11]  Rudolf A. Treumann,et al.  Advanced space plasma physics , 1997 .

[12]  Richard M. Thorne,et al.  The modified plasma dispersion function , 1991 .

[13]  P. Yoon Electromagnetic fire-hose instability in a fully relativistic bi-Maxwellian plasma , 1989 .

[14]  Davidson,et al.  Exact analytical model of the classical Weibel instability in a relativistic anisotropic plasma. , 1987, Physical review. A, General physics.

[15]  N. T. Gladd The whistler instability at relativistic energies , 1983 .

[16]  A. F. Aleksandrov,et al.  Principles of plasma electrodynamics , 1978 .

[17]  R. Sagdeev,et al.  Collisionless shock waves in high β plasmas: 1 , 1967 .

[18]  E. S. Weibel,et al.  Spontaneously Growing Transverse Waves in a Plasma Due to an Anisotropic Velocity Distribution , 1959 .

[19]  Burton D. Fried,et al.  Mechanism for Instability of Transverse Plasma Waves , 1959 .