Morphological Analysis of H I Features. II. Wavelet-based Multifractal Formalism

The 2D wavelet transform modulus maxima method is used to obtain quantitative information on the fractal/multifractal nature and anisotropic structure of Galactic atomic hydrogen (H I) from the Canadian Galactic Plane Survey. Five mosaics were analyzed in the second quadrant of the Milky Way, corresponding to the Local, Perseus, and Outer spiral arms, as well as two "interarm" regions located between these three spiral arms. A monofractal signature is found for all five mosaics. An anisotropic signature is detected: the rms roughness fluctuations of the mosaics in the latitude direction differ from those in the longitude direction. This anisotropy is scale-independent for the interarm regions while it is scale-dependent for the spiral arms. The longitudinal matter distribution of H I structure is similar for all five mosaics while the latitudinal distribution is smoother in the spiral arms. These results hold for all physical length scales studied, from ~2 pc in the Local arm to ~44 pc in the Outer arm. Several hypotheses are investigated to provide a physical explanation: the scale-height gradient, the density wave, star formation activity, photolevitation of dusty clouds, random motion of H I clouds, corrugation, and turbulence. The slopes of the power spectra for an increasing number of velocity channels were compared for 11 sections of the Local arm column density mosaic. All slopes are identical within the uncertainties (-3.0) and we do not detect for the Galactic plane the change in the power law index predicted by Lazarian and Pogosyan.

[1]  P. Abry,et al.  Lois d'Echelle, Fractales et Ondelettes , 2002 .

[2]  F. Nekka,et al.  Morphological Analysis of H I Features. I. Metric Space Technique , 2004 .

[3]  A. Lazarian,et al.  Velocity modification of the power spectrum from an absorbing medium , 2004, astro-ph/0405461.

[4]  N. Decoster,et al.  A wavelet-based method for multifractal image analysis. II. Applications to synthetic multifractal rough surfaces , 2000 .

[5]  D. Sornette Critical Phenomena in Natural Sciences: Chaos, Fractals, Selforganization and Disorder: Concepts and Tools , 2000 .

[6]  A. Toomre,et al.  Theories of Spiral Structure , 1977 .

[7]  Schwartz,et al.  Method for generating long-range correlations for large systems. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[8]  Turbulent dissipation in the ISM: the coexistence of forced and decaying regimes and implications for galaxy formation and evolution , 2001, astro-ph/0101397.

[9]  J. Dickey,et al.  Southern Galactic Plane Survey Measurements of the Spatial Power Spectrum of Interstellar H I in the Inner Galaxy , 2001, astro-ph/0107604.

[10]  Emmanuel Bacry,et al.  THE THERMODYNAMICS OF FRACTALS REVISITED WITH WAVELETS , 1995 .

[11]  T. Passot,et al.  Thermal Instability and Magnetic Pressure in the Turbulent Interstellar Medium , 2002 .

[12]  F. Ferrini,et al.  Photolevitation of Diffuse Clouds , 1991 .

[13]  Shaun Lovejoy,et al.  Multifractal Cascade Dynamics and Turbulent Intermittency , 1997 .

[14]  F. Lockman,et al.  The H I halo in the inner galaxy , 1984 .

[15]  M. P. Hobson,et al.  Maximum-entropy image reconstruction using wavelets , 2003, astro-ph/0303246.

[16]  D. Bazell,et al.  Fractal structure of interstellar cirrus , 1988 .

[17]  W. Roberts APPLICATION OF THE DENSITY-WAVE THEORY OF SPIRAL STRUCTURE: SHOCK FORMATION ALONG THE PERSEUS ARM. , 1972 .

[18]  A. Arneodo,et al.  A wavelet-based method for multifractal image analysis. III. Applications to high-resolution satellite images of cloud structure , 2000 .

[19]  A. Arneodo,et al.  A wavelet-based method for multifractal image analysis. I. Methodology and test applications on isotropic and anisotropic random rough surfaces , 2000 .

[20]  W. B. Burton,et al.  The Galactic Interstellar Medium: Saas-Fee Advanced Course 21. Lecture Notes 1991. Swiss Society for Astrophysics and Astronomy , 1992 .

[21]  Bruce G. Elmegreen,et al.  A FRACTAL ORIGIN FOR THE MASS SPECTRUM OF INTERSTELLAR CLOUDS , 1996 .

[22]  B. L. Cox,et al.  Fractal Surfaces: Measurement and Applications in the Earth Sciences , 1993 .

[23]  A. Arneodo,et al.  Wavelet transform of multifractals. , 1988, Physical review letters.

[24]  Jun Yu Li,et al.  A practical method to experimentally evaluate the Hausdorff dimension: an alternative phase-transition-based methodology. , 2004, Chaos.

[25]  R. Sault,et al.  Fractal Structure in the Interstellar Medium of the Small Magellanic Cloud , 1999 .

[26]  D. O. Astronomy,et al.  Interstellar Turbulence I: Observations and Processes , 2004, astro-ph/0404451.

[27]  B. Mandelbrot,et al.  Fractals: Form, Chance and Dimension , 1978 .

[28]  E. Falgarone,et al.  A signature of the intermittency of interstellar turbulence - The wings of molecular line profiles , 1990 .

[29]  R. Benzi,et al.  Wavelet analysis of a Gaussian Kolmogorov signal , 1993 .

[30]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[31]  A. Grossmann,et al.  DECOMPOSITION OF HARDY FUNCTIONS INTO SQUARE INTEGRABLE WAVELETS OF CONSTANT SHAPE , 1984 .

[32]  F. Shu,et al.  On the spiral structure of disk galaxies, ii. Outline of a theory of density waves. , 1966, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Frank H. Shu,et al.  On the Spiral Structure of Disk Galaxies. , 1964 .

[34]  Andreas Rieder,et al.  Wavelets: Theory and Applications , 1997 .

[35]  E. Bacry,et al.  Wavelets and multifractal formalism for singular signals: Application to turbulence data. , 1991, Physical review letters.

[36]  S. Mallat A wavelet tour of signal processing , 1998 .

[37]  M. M. Low MHD Turbulence in Star-Forming Regions and the Interstellar Medium , 2002, astro-ph/0201157.

[38]  J. Dickey,et al.  H I in the Galaxy , 1990 .

[39]  C. Gehman,et al.  Vertical distribution and support of galactic H I , 1991 .

[40]  Peter G. Martin,et al.  The Canadian Galactic Plane Survey , 1998, Publications of the Astronomical Society of Australia.

[41]  A. Lazarian,et al.  Grain Alignment by Radiation in Dark Clouds and Cores , 2005 .

[42]  A. Ferrara Can Galactic H I be radiatively supported , 1993 .

[43]  C. Walker,et al.  The edges of molecular clouds: Fractal boundaries and density structure , 1991 .

[44]  Ct,et al.  A Turbulent Origin for Flocculent Spiral Structure in Galaxies. II. Observations and Models of M33 , 2003, astro-ph/0305050.

[45]  A. Lazarian,et al.  Compressible Magnetohydrodynamic Turbulence : mode coupling , scaling relations , anisotropy , viscosity-damped regime , and astrophysical implications , 2003 .

[46]  E. Bacry,et al.  Wavelet analysis of fully developed turbulence data and measurement of scaling exponents , 1991 .

[47]  Gravity-driven turbulence in galactic disks , 2002, astro-ph/0207641.

[48]  Velocity statistics from spectral line data: effects of density–velocity correlations, magnetic field and shear , 2002, astro-ph/0210159.

[49]  Stéphane Mallat,et al.  Singularity detection and processing with wavelets , 1992, IEEE Trans. Inf. Theory.

[50]  C. Anderson,et al.  Hierarchical structure analysis of interstellar clouds using nonorthogonal wavelets , 1993 .

[51]  A. Arneodo,et al.  WAVELET BASED MULTIFRACTAL ANALYSIS OF ROUGH SURFACES : APPLICATION TO CLOUD MODELS AND SATELLITE DATA , 1997 .

[52]  S. Mallat VI – Wavelet zoom , 1999 .

[53]  A. Grossmann,et al.  Cycle-octave and related transforms in seismic signal analysis , 1984 .

[54]  A. Stark,et al.  Catalog of CO radial velocities toward galactic H II regions , 1982 .

[55]  E. Falgarone,et al.  Turbulence and magnetic fields in astrophysics , 2003 .

[56]  On the Use of Fractional Brownian Motion Simulations to Determine the Three-dimensional Statistical Properties of Interstellar Gas , 2003, astro-ph/0304539.

[57]  J. Scalo Theoretical Approaches to Interstellar Turbulence , 1987 .

[58]  G. Batchelor Turbulence and Magnetic Fields , 1955 .

[59]  R. Henriksen,et al.  A first use of wavelet analysis for molecular clouds , 1990 .

[60]  T. Tongue,et al.  The Geometry of the H I of Several Members of the M81 Group: The H I Is Fractal , 1999 .

[61]  R. J. Quiroga The corrugation of the galactic layer , 1974 .

[62]  B. Mandelbrot Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier , 1974, Journal of Fluid Mechanics.

[63]  Jensen,et al.  Erratum: Fractal measures and their singularities: The characterization of strange sets , 1986, Physical review. A, General physics.

[64]  A. Pouquet,et al.  A Turbulent Model for the Interstellar Medium. II. Magnetic Fields and Rotation , 1994 .

[65]  Horváth,et al.  A search for scale-dependent morphology in five molecular cloud complexes , 1989 .

[66]  E. Bacry,et al.  Multifractal formalism for fractal signals: The structure-function approach versus the wavelet-transform modulus-maxima method. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[67]  S. Zucker,et al.  Evaluating the fractal dimension of profiles. , 1989, Physical review. A, General physics.

[68]  U. Texas,et al.  Interstellar Turbulence II: Implications and Effects , 2004, astro-ph/0404452.

[69]  J. Scalo,et al.  Multifractal Scaling, Geometrical Diversity, and Hierarchical Structure in the Cool Interstellar Medium , 1997, astro-ph/9707102.

[70]  J. Scalo Perception of interstellar structure - Facing complexity , 1990 .

[71]  Scotti,et al.  Fractal dimension of velocity signals in high-Reynolds-number hydrodynamic turbulence. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[72]  D. A. Green,et al.  A power spectrum analysis of the angular scale of Galactic neutral hydrogen emission towards l=140°, b=0° , 1993 .

[73]  Emmanuel Bacry,et al.  Wavelet-based estimators of scaling behavior , 2002, IEEE Trans. Inf. Theory.

[74]  F. Boulanger,et al.  High resolution 21 cm mapping of the Ursa Major Galactic cirrus: Power spectra of the high-latitude HI gas , 2003, astro-ph/0306570.

[75]  A. Arneodo,et al.  Intermittency, Log-Normal Statistics, and Multifractal Cascade Process in High-Resolution Satellite Images of Cloud Structure , 1999 .

[76]  Mixing Timescales in a Supernova-driven Interstellar Medium , 2002, astro-ph/0208441.

[77]  F. Hausdorff Dimension und äußeres Maß , 1918 .

[78]  E. Bacry,et al.  The Multifractal Formalism Revisited with Wavelets , 1994 .

[79]  R. J. Quiroga The spiral structure in the inner parts of the Galaxy , 1977 .

[80]  A. Besicovitch On the sum of digits of real numbers represented in the dyadic system. , 1935 .

[81]  S. Lazarian Velocity and density spectra of the small magellanic cloud , 2001, astro-ph/0102191.

[82]  J. Melnick,et al.  Structure and Dynamics of the Interstellar medium , 1989 .

[83]  L. Pontrjagin,et al.  Sur Une Propriete Metrique de la Dimension , 1932 .

[84]  A. Politi,et al.  Statistical description of chaotic attractors: The dimension function , 1985 .

[85]  Roux,et al.  Reliability of self-affine measurements. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[86]  W. B. Burton The Morphology of Hydrogen and of Other Tracers in the Galaxy , 1976 .

[87]  D. Cox,et al.  Magnetohydrodynamic Modeling of a Galactic Spiral Arm as a Combination Shock and Hydraulic Jump , 1998 .

[88]  E. Bacry,et al.  Singularity spectrum of fractal signals from wavelet analysis: Exact results , 1993 .

[89]  D. Schertzer,et al.  Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes , 1987 .

[90]  J. L. Véhel,et al.  Stochastic fractal models for image processing , 2002, IEEE Signal Process. Mag..