Helium bubble bursting in tungsten

Molecular dynamics simulations have been used to systematically study the pressure evolution and bursting behavior of sub-surface helium bubbles and the resulting tungsten surface morphology. This study specifically investigates how bubble shape and size, temperature, tungsten surface orientation, and ligament thickness above the bubble influence bubble stability and surface evolution. The tungsten surface is roughened by a combination of adatom “islands,” craters, and pinholes. The present study provides insight into the mechanisms and conditions leading to various tungsten topology changes, which we believe are the initial stages of surface evolution leading to the formation of nanoscale fuzz.

[1]  R. Doerner,et al.  Formation of helium induced nanostructure ‘fuzz’ on various tungsten grades , 2010 .

[2]  Brian D. Wirth,et al.  Tungsten surface evolution by helium bubble nucleation, growth and rupture , 2013 .

[3]  D. E. Beck A new interatomic potential function for helium , 1968 .

[4]  N. Ghoniem,et al.  A description of stress driven bubble growth of helium implanted tungsten , 2009 .

[5]  John R. Terry,et al.  Tungsten nano-tendril growth in the Alcator C-Mod divertor , 2012 .

[6]  H. Kurishita,et al.  Helium bubble formation on tungsten in dependence of fabrication method , 2011 .

[7]  K. Nordlund,et al.  MD simulations of onset of tungsten fuzz formation under helium irradiation , 2013 .

[8]  Brian D. Wirth,et al.  Interatomic potentials for simulation of He bubble formation in W , 2013 .

[9]  Brian D. Wirth,et al.  Thermal stability of helium-vacancy clusters in iron , 2003 .

[10]  M. Finnis,et al.  A simple empirical N-body potential for transition metals , 1984 .

[11]  M. Ye,et al.  Formation mechanism of bubbles and holes on tungsten surface with low-energy and high-flux helium plasma irradiation in NAGDIS-II , 2004 .

[12]  Wataru Sakaguchi,et al.  Formation process of tungsten nanostructure by the exposure to helium plasma under fusion relevant plasma conditions , 2009 .

[13]  N. Yoshida,et al.  Microstructure evolution in tungsten during low-energy helium ion irradiation , 2000 .

[14]  R. Doerner,et al.  Nanostructure formation on tungsten exposed to low-pressure rf helium plasmas: A study of ion energy threshold and early stage growth , 2011 .

[15]  Ju Li,et al.  AtomEye: an efficient atomistic configuration viewer , 2003 .

[16]  S. Krasheninnikov Viscoelastic model of tungsten ‘fuzz’ growth , 2011 .

[17]  W. Wolfer The pressure for dislocation loop punching by a single bubble , 1988 .

[18]  K. Tokunaga,et al.  The effects of high fluence mixed-species (deuterium, helium, beryllium) plasma interactions with tungsten , 2009 .

[19]  G. Ackland,et al.  An improved N-body semi-empirical model for body-centred cubic transition metals , 1987 .

[20]  R. Doerner,et al.  Microscopic damage of tungsten exposed to deuterium–helium mixture plasma in PISCES and its impacts on retention property , 2011 .

[21]  G. Tynan,et al.  Effect of bulk temperature on erosion of tungsten plasma-facing components subject to simultaneous deuterium plasma and heat pulses , 2009 .

[22]  S. Takamura,et al.  Sub-ms laser pulse irradiation on tungsten target damaged by exposure to helium plasma , 2007 .

[23]  W. Wolfer Dislocation loop punching in bubble arrays , 1989 .

[24]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .