Optical properties of ultrafine line and space polymeric nanogratings coated with metal and metal–dielectric–metal thin films

Noble metal and metal-dielectric-metal ultrathin films were deposited on the surfaces of ultrafine polymeric nanogratings, which were fabricated using nanoimprint lithography. Experimental results showed dramatic differences of the surface morphologies for single metal and triple metal-dielectric-metal films deposited on flat and corrugated polymeric surfaces. The effect of the surface morphology on the optical properties was hence investigated and analyzed under linearly polarized light. The surface plasmon resonances of single metal and triple metal-dielectric-metal films deposited on polymeric nanograting surfaces were also characterized based on the Kretschmann prism-coupling method. The single metal and triple metal-dielectric-metal films deposited on polymeric nanograting surfaces are important for the study of photon-plasmon interactions (i.e. couplings and conversions) at the interfaces between a nanograting and metal films.

[1]  U. Chettiar,et al.  Negative index of refraction in optical metamaterials. , 2005, Optics letters.

[2]  Jung Ho Park,et al.  Plasmonic Color Filter and its Fabrication for Large‐Area Applications , 2013 .

[3]  Ann Roberts,et al.  Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing. , 2010, Nano letters.

[4]  P. Sharlandjiev,et al.  Resonant optical transmission from a one-dimensional relief metalized subwavelength grating. , 2007, Applied optics.

[5]  R. Williams,et al.  Ultrasmooth silver thin films deposited with a germanium nucleation layer. , 2009, Nano letters.

[6]  Jiří Homola,et al.  Rich information format surface plasmon resonance biosensor based on array of diffraction gratings , 2005 .

[7]  T. Ebbesen,et al.  Channel plasmon subwavelength waveguide components including interferometers and ring resonators , 2006, Nature.

[8]  Qingzhen Hao,et al.  Beam bending via plasmonic lenses. , 2010, Optics express.

[9]  A. Hillier,et al.  Surface plasmon resonance enhanced transmission of light through gold-coated diffraction gratings. , 2008, Analytical chemistry.

[10]  A. Mooradian,et al.  Photoluminescence of Metals , 1969 .

[11]  Xiao Wei Sun,et al.  Nanoimprinted ultrafine line and space nanogratings for liquid crystal alignment , 2012, Nanotechnology.

[12]  C. Chum,et al.  Optical Magnetic Resonances in Subwavelength Ag–MgF2–Ag Grating Structures , 2013, Plasmonics.

[13]  W. Knoll,et al.  Interfaces and thin films as seen by bound electromagnetic waves. , 1998, Annual review of physical chemistry.

[14]  Xun Cai,et al.  Optical properties of metal-dielectric multilayers in the near UV region , 2006 .

[15]  Andrew C. Hillier,et al.  Wavelength tunable surface plasmon resonance-enhanced optical transmission through a chirped diffraction grating. , 2010, Analytical chemistry.

[16]  T. Huang,et al.  All-Optical Modulation of Localized Surface Plasmon Coupling in a Hybrid System Composed of Photo-Switchable Gratings and Au Nanodisk Arrays. , 2011, The journal of physical chemistry. C, Nanomaterials and interfaces.

[17]  J. Rolland,et al.  Metallic film optimization in a surface plasmon resonance biosensor by the extended Rouard method. , 2007, Applied optics.

[18]  Jianfang Wang,et al.  Resonance-coupling-based plasmonic switches. , 2010, Small.

[19]  Wenshan Cai,et al.  A negative permeability material at red light. , 2007, Optics express.

[20]  Yasin Ekinci,et al.  Engineering metal adhesion layers that do not deteriorate plasmon resonances. , 2013, ACS nano.

[21]  H. Lezec,et al.  Highly confined photon transport in subwavelength metallic slot waveguides. , 2006, Nano letters.

[22]  A. Alivisatos,et al.  Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative. , 2012, ACS nano.

[23]  Vladimir M. Shalaev,et al.  Tunable magnetic response of metamaterials , 2009 .

[24]  S. L. Prosvirnin,et al.  Coherent meta-materials and the lasing spaser , 2008, 0802.2519.

[25]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[26]  Abraham J. Qavi,et al.  Nanoparticle-enhanced diffraction gratings for ultrasensitive surface plasmon biosensing. , 2007, Analytical chemistry.

[27]  Françoise Argoul,et al.  Surface plasmon resonance characterization of thermally evaporated thin gold films , 2007 .

[28]  Zhaowei Liu,et al.  Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects , 2007, Science.

[29]  Wenshan Cai,et al.  Metamagnetics with rainbow colors. , 2007, Optics express.

[30]  A. Kocabas,et al.  Excitation of a surface plasmon with an elastomeric grating , 2006 .

[31]  N. Yu,et al.  A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. , 2012, Nano letters.

[32]  M. Xiao,et al.  Surface propagation with a large spectral red-shift on a gold thin film containing subwavelength holes , 2003 .

[33]  D. Bergman,et al.  Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. , 2003, Physical review letters.

[34]  M. Bayindir,et al.  Resonant transmission of light through surface plasmon structures , 2009 .

[35]  P. Lalanne,et al.  Microscopic theory of the extraordinary optical transmission , 2008, Nature.

[36]  T. Ebbesen,et al.  Light in tiny holes , 2007, Nature.

[37]  W. Knoll,et al.  Electrochemical surface plasmon spectroscopy - Recent developments and applications , 2007 .

[38]  Mark R. Dennis,et al.  A super-oscillatory lens optical microscope for subwavelength imaging. , 2012, Nature materials.

[39]  I. Smolyaninov,et al.  Magnifying Superlens in the Visible Frequency Range , 2006, Science.

[40]  Xiangang Luo,et al.  Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. , 2010, Nature communications.

[41]  R. Blanchard,et al.  Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. , 2012, Nano letters.

[42]  Harry A. Atwater,et al.  Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides , 2003, Nature materials.

[43]  Uday K Chettiar,et al.  Negative index metamaterial combining magnetic resonators with metal films. , 2006, Optics express.

[44]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[45]  Jinghua Teng,et al.  Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays. , 2013, Nanoscale.

[46]  L. Verslegers,et al.  Planar lenses based on nanoscale slit arrays in a metallic film , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[47]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[48]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[49]  Jiří Homola,et al.  Multiple surface plasmon spectroscopy for study of biomolecular systems , 2006 .

[50]  S. L. Teo,et al.  High aspect subdiffraction-limit photolithography via a silver superlens. , 2012, Nano letters.

[51]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[52]  M. Helm,et al.  Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling , 2011, Nature communications.

[53]  Jinghua Teng,et al.  Effect of surface morphology on the optical properties in metal-dielectric-metal thin film systems. , 2011, ACS applied materials & interfaces.

[54]  W. Knoll,et al.  Electrochemically tunable surface-plasmon-enhanced diffraction gratings and their (bio-)sensing applications. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[55]  T. Huang,et al.  A frequency-addressed plasmonic switch based on dual-frequency liquid crystals , 2010 .

[56]  Yuebing Zheng,et al.  Light‐Driven Plasmonic Switches Based on Au Nanodisk Arrays and Photoresponsive Liquid Crystals , 2008 .

[57]  V. Podolskiy,et al.  Stimulated emission of surface plasmon polaritons , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[58]  Nikolay I. Zheludev,et al.  Ultrafast active plasmonics: transmission and control of femtosecond plasmon signals , 2008 .

[59]  F. Aussenegg,et al.  Electromagnetic energy transport via linear chains of silver nanoparticles. , 1998, Optics letters.

[60]  Harry A Atwater,et al.  Plasmonic color filters for CMOS image sensor applications. , 2012, Nano letters.

[61]  V. Shalaev Optical negative-index metamaterials , 2007 .

[62]  William L. Barnes,et al.  Surface profile dependence of surface plasmon band gaps on metallic gratings , 1996 .

[63]  V. Shalaev,et al.  Demonstration of a spaser-based nanolaser , 2009, Nature.

[64]  N. Halas,et al.  Nano-optics from sensing to waveguiding , 2007 .

[65]  W. Knoll,et al.  Surface plasmon enhanced diffraction for label-free biosensing. , 2004, Analytical chemistry.

[66]  R A Linke,et al.  Beaming Light from a Subwavelength Aperture , 2002, Science.

[67]  A. Kildishev,et al.  Holey-metal lenses: sieving single modes with proper phases. , 2013, Nano letters.

[68]  J. Seidel,et al.  Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution. , 2005, Physical review letters.

[69]  Shen,et al.  Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces. , 1986, Physical review. B, Condensed matter.