The origin of accreted stellar halo populations in the Milky Way using APOGEE,Gaia, and the EAGLE simulations

Recent work indicates that the nearby Galactic halo is dominated by the debris from a major accretion event. We confirm that result from an analysis of APOGEE-DR14 element abundances and $\textit{Gaia}$-DR2 kinematics of halo stars. We show that $\sim$2/3 of nearby halo stars have high orbital eccentricities ($e \gtrsim 0.8$), and abundance patterns typical of massive Milky Way dwarf galaxy satellites today, characterised by relatively low [Fe/H], [Mg/Fe], [Al/Fe], and [Ni/Fe]. The trend followed by high $e$ stars in the [Mg/Fe]-[Fe/H] plane shows a change of slope at [Fe/H]$\sim-1.3$, which is also typical of stellar populations from relatively massive dwarf galaxies. Low $e$ stars exhibit no such change of slope within the observed [Fe/H] range and show slightly higher abundances of Mg, Al and Ni. Unlike their low $e$ counterparts, high $e$ stars show slightly retrograde motion, make higher vertical excursions and reach larger apocentre radii. By comparing the position in [Mg/Fe]-[Fe/H] space of high $e$ stars with those of accreted galaxies from the EAGLE suite of cosmological simulations we constrain the mass of the accreted satellite to be in the range $10^{8.5}\lesssim M_*\lesssim 10^{9}\mathrm{M_\odot}$. We show that the median orbital eccentricities of debris are largely unchanged since merger time, implying that this accretion event likely happened at $z\lesssim1.5$. The exact nature of the low $e$ population is unclear, but we hypothesise that it is a combination of $\textit{in situ}$ star formation, high $|z|$ disc stars, lower mass accretion events, and contamination by the low $e$ tail of the high $e$ population. Finally, our results imply that the accretion history of the Milky Way was quite unusual.

[1]  F. Anders,et al.  The metal-rich halo tail extended in |z|: a characterization with Gaia DR2 and APOGEE , 2018, Monthly Notices of the Royal Astronomical Society.

[2]  Sergey E. Koposov,et al.  The halo’s ancient metal-rich progenitor revealed with BHB stars , 2018, Monthly Notices of the Royal Astronomical Society.

[3]  C. Prieto,et al.  APOGEE Data Releases 13 and 14: Stellar Parameter and Abundance Comparisons with Independent Analyses , 2018, The Astronomical Journal.

[4]  C. Prieto,et al.  APOGEE Data Releases 13 and 14: Data and Analysis , 2018, The Astronomical Journal.

[5]  Anthony G. A. Brown,et al.  The merger that led to the formation of the Milky Way’s inner stellar halo and thick disk , 2018, Nature.

[6]  Sergey E. Koposov,et al.  Apocenter Pile-up: Origin of the Stellar Halo Density Break , 2018, The Astrophysical Journal.

[7]  Joana M. Oliveira,et al.  The VMC survey – XXXI: The spatially resolved star formation history of the main body of the Small Magellanic Cloud , 2018, Monthly Notices of the Royal Astronomical Society.

[8]  M. Lehnert,et al.  In Disguise or Out of Reach: First Clues about In Situ and Accreted Stars in the Stellar Halo of the Milky Way from Gaia DR2 , 2018, The Astrophysical Journal.

[9]  Sergey E. Koposov,et al.  The Sausage Globular Clusters , 2018, The Astrophysical Journal.

[10]  A. Helmi,et al.  One Large Blob and Many Streams Frosting the nearby Stellar Halo in Gaia DR2 , 2018, The Astrophysical Journal.

[11]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[12]  Sergey E. Koposov,et al.  Co-formation of the disc and the stellar halo , 2018, 1802.03414.

[13]  J. Bovy,et al.  Fast Estimation of Orbital Parameters in Milky Way-like Potentials , 2018, Publications of the Astronomical Society of the Pacific.

[14]  R. Schiavon,et al.  The origin of diverse α-element abundances in galaxy discs , 2018, 1801.03593.

[15]  Cambridge,et al.  Halo substructure in the SDSS--Gaia catalogue: streams and clumps , 2017, 1712.04071.

[16]  F. Anders,et al.  StarHorse : a Bayesian tool for determining stellar masses, ages, distances, and extinctions for field stars , 2017, 1710.09970.

[17]  C. Frenk,et al.  The innate origin of radial and vertical gradients in a simulated galaxy disc , 2017, 1709.01040.

[18]  D. A. García-Hernández,et al.  University of Birmingham The Fourteenth Data Release of the Sloan Digital Sky Survey: , 2017 .

[19]  C. Prieto,et al.  Disentangling the Galactic Halo with APOGEE. II. Chemical and Star Formation Histories for the Two Distinct Populations , 2017, 1711.06225.

[20]  C. Prieto,et al.  Disentangling the Galactic Halo with APOGEE. I. Chemical and Kinematical Investigation of Distinct Metal-poor Populations , 2017, 1711.05781.

[21]  D. A. García-Hernández,et al.  Target Selection for the SDSS-IV APOGEE-2 Survey , 2017, 1708.00155.

[22]  T. Beers,et al.  APOGEE Chemical Abundances of the Sagittarius Dwarf Galaxy , 2017, 1707.03456.

[23]  J. Bovy,et al.  The age–metallicity structure of the Milky Way disc using APOGEE , 2017, 1706.00018.

[24]  C. Frenk,et al.  Optical colours and spectral indices of z = 0.1 eagle galaxies with the 3D dust radiative transfer code skirt , 2017, 1705.02331.

[25]  R. Bower,et al.  The relation between galaxy morphology and colour in the EAGLE simulation , 2017, 1704.06283.

[26]  Aniruddha R. Thakar,et al.  Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe , 2017, 1703.00052.

[27]  C. Frenk,et al.  Size matters: abundance matching, galaxy sizes, and the Tully-Fisher relation in EAGLE , 2016, 1607.03100.

[28]  N. Amorisco Contributions to the accreted stellar halo: an atlas of stellar deposition , 2015, 1511.08806.

[29]  J. Helly,et al.  Size evolution of normal and compact galaxies in the EAGLE simulation , 2015, 1510.05645.

[30]  C. Barache,et al.  Gaia Data Release 1: Astrometry - one billion positions, two million proper motions and parallaxes , 2016, 1609.04303.

[31]  H. Rix,et al.  A RADIAL AGE GRADIENT IN THE GEOMETRICALLY THICK DISK OF THE MILKY WAY , 2016, 1609.01168.

[32]  B. Andrews,et al.  Inflow, Outflow, Yields, and Stellar Population Mixing in Chemical Evolution Models , 2016, 1604.08613.

[33]  B. Andrews,et al.  Equilibrium and Sudden Events in Chemical Evolution , 2016, 1604.07435.

[34]  Joss Bland-Hawthorn,et al.  The Galaxy in Context: Structural, Kinematic, and Integrated Properties , 2016, 1602.07702.

[35]  Durham,et al.  It is not easy being green: the evolution of galaxy colour in the EAGLE simulation , 2016, 1601.07907.

[36]  D. A. García-Hernández,et al.  Red giant masses and ages derived from carbon and nitrogen abundances , 2015, 1511.08203.

[37]  Nicholas Troup,et al.  ASPCAP: THE APOGEE STELLAR PARAMETER AND CHEMICAL ABUNDANCES PIPELINE , 2015, 1510.07635.

[38]  Carlos S. Frenk,et al.  The eagle simulations of galaxy formation: Public release of halo and galaxy catalogues , 2015, Astron. Comput..

[39]  K. Schlesinger,et al.  Measuring the vertical age structure of the Galactic disc using asteroseismology and SAGA , 2015, 1510.01376.

[40]  H. Rix,et al.  THE STELLAR POPULATION STRUCTURE OF THE GALACTIC DISK , 2015, 1509.05796.

[41]  Thomas Masseron,et al.  Using chemical tagging to redefine the interface of the Galactic disc and halo , 2015, 1507.03604.

[42]  J. Holtzman,et al.  METALLICITY DISTRIBUTION FUNCTIONS OF FOUR LOCAL GROUP DWARF GALAXIES , 2015, 1504.07264.

[43]  Durham,et al.  Colours and luminosities of z = 0.1 galaxies in the eagle simulation , 2015, 1504.04374.

[44]  C. Prieto,et al.  Deep SDSS optical spectroscopy of distant halo stars II. Iron, calcium, and magnesium abundances , 2015, 1503.04362.

[45]  Jonathan C. Bird,et al.  CHEMICAL CARTOGRAPHY WITH APOGEE: METALLICITY DISTRIBUTION FUNCTIONS AND THE CHEMICAL STRUCTURE OF THE MILKY WAY DISK , 2015, 1503.02110.

[46]  G. Gilmore,et al.  Carbon, nitrogen and α-element abundances determine the formation sequence of the Galactic thick and thin discs , 2015, 1503.00537.

[47]  M. Martig,et al.  ON THE FORMATION OF GALACTIC THICK DISKS , 2015, 1502.06606.

[48]  F. Castelli,et al.  NEW H-BAND STELLAR SPECTRAL LIBRARIES FOR THE SDSS-III/APOGEE SURVEY , 2015, 1502.05237.

[49]  C. Prieto,et al.  THE SDSS-III APOGEE SPECTRAL LINE LIST FOR H-BAND SPECTROSCOPY , 2015, 1502.04080.

[50]  D. Schneider,et al.  Spectro-photometric distances to stars: a general-purpose Bayesian approach , 2015, 1501.05500.

[51]  Annie C. Robin,et al.  ABUNDANCES, STELLAR PARAMETERS, AND SPECTRA FROM THE SDSS-III/APOGEE SURVEY , 2015, 1501.04110.

[52]  Scott W. Fleming,et al.  THE DATA REDUCTION PIPELINE FOR THE APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT , 2015, 1501.03742.

[53]  S. White,et al.  The EAGLE simulations of galaxy formation: calibration of subgrid physics and model variations , 2015, 1501.01311.

[54]  S. White,et al.  The EAGLE project: Simulating the evolution and assembly of galaxies and their environments , 2014, 1407.7040.

[55]  J. Bovy galpy: A python LIBRARY FOR GALACTIC DYNAMICS , 2014, 1412.3451.

[56]  D. A. García-Hernández,et al.  TRACING CHEMICAL EVOLUTION OVER THE EXTENT OF THE MILKY WAY'S DISK WITH APOGEE RED CLUMP STARS , 2014, 1409.3566.

[57]  C. Allende Prieto,et al.  Deep SDSS optical spectroscopy of distant halo stars - I. Atmospheric parameters and stellar metallicity distribution , 2014, 1406.4997.

[58]  A. Subramaniam,et al.  Red giants in the Small Magellanic Cloud - II. Metallicity gradient and age-metallicity relation , 2014, 1405.6452.

[59]  Lars Koesterke,et al.  THE APOGEE RED-CLUMP CATALOG: PRECISE DISTANCES, VELOCITIES, AND HIGH-RESOLUTION ELEMENTAL ABUNDANCES OVER A LARGE AREA OF THE MILKY WAY'S DISK , 2014, 1405.1032.

[60]  Judith G. Cohen,et al.  THE UNIVERSAL STELLAR MASS–STELLAR METALLICITY RELATION FOR DWARF GALAXIES , 2013, 1310.0814.

[61]  Don A. VandenBerg,et al.  The bifurcated age–metallicity relation of Milky Way globular clusters and its implications for the accretion history of the galaxy , 2013, 1309.0822.

[62]  M. Lehnert,et al.  The age structure of stellar populations in the solar vicinity Clues of a two-phase formation history of the Milky Way disk , 2013, 1305.4663.

[63]  J. Bird,et al.  INSIDE OUT AND UPSIDE DOWN: TRACING THE ASSEMBLY OF A SIMULATED DISK GALAXY USING MONO-AGE STELLAR POPULATIONS , 2013, 1301.0620.

[64]  V. Belokurov,et al.  BROKEN AND UNBROKEN: THE MILKY WAY AND M31 STELLAR HALOS , 2012, 1210.4929.

[65]  P. Hopkins,et al.  A general class of Lagrangian smoothed particle hydrodynamics methods and implications for fluid mixing problems , 2012, 1206.5006.

[66]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[67]  W. M. Wood-Vasey,et al.  THE NINTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1207.7137.

[68]  J. Binney Actions for axisymmetric potentials , 2012, 1207.4910.

[69]  David W. Hogg,et al.  THE VERTICAL MOTIONS OF MONO-ABUNDANCE SUB-POPULATIONS IN THE MILKY WAY DISK , 2012, 1202.2819.

[70]  Astronomy,et al.  Two distinct halo populations in the solar neighborhood - III. Evidence from stellar ages and orbital parameters , 2011, 1111.4026.

[71]  H. Rix,et al.  THE SPATIAL STRUCTURE OF MONO-ABUNDANCE SUB-POPULATIONS OF THE MILKY WAY DISK , 2011, 1111.1724.

[72]  C. D. Vecchia,et al.  Implementation of feedback in smoothed particle hydrodynamics: towards concordance of methods , 2012 .

[73]  David W. Hogg,et al.  THE MILKY WAY HAS NO DISTINCT THICK DISK , 2011, 1111.6585.

[74]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[75]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[76]  J. Bovy,et al.  Data analysis recipes: Fitting a model to data , 2010, 1008.4686.

[77]  W. Dehnen,et al.  Inviscid SPH , 2010, 1006.1524.

[78]  William J. Schuster,et al.  Two distinct halo populations in the solar neighborhood - Evidence from stellar abundance ratios and kinematics , 2010, 1002.4514.

[79]  Daniel J. Price Smoothed Particle Magnetohydrodynamics – IV. Using the vector potential , 2009, 0909.2469.

[80]  Robert Barkhouser,et al.  The Apache Point Observatory Galactic Evolution Experiment (APOGEE) , 2007, Astronomical Telescopes + Instrumentation.

[81]  Michael Wegner,et al.  Ground-based and Airborne Instrumentation for Astronomy III , 2010 .

[82]  W. Dehnen,et al.  Local kinematics and the local standard of rest , 2009, 0912.3693.

[83]  E. Tolstoy,et al.  Star-Formation Histories, Abundances, and Kinematics of Dwarf Galaxies in the Local Group , 2009, 0904.4505.

[84]  James Binney,et al.  Galactic Dynamics: Second Edition , 2008 .

[85]  J. Bland-Hawthorn,et al.  The Magellanic System: Stars, Gas, and Galaxies , 2008, Proceedings of the International Astronomical Union.

[86]  R. Marel,et al.  Kinematical structure of the Magellanic System , 2008, Proceedings of the International Astronomical Union.

[87]  W. M. Wood-Vasey,et al.  SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.

[88]  D. York,et al.  Two stellar components in the halo of the Milky Way , 2007, Nature.

[89]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[90]  Brian E. Granger,et al.  IPython: A System for Interactive Scientific Computing , 2007, Computing in Science & Engineering.

[91]  Walter A. Siegmund,et al.  # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE 2.5 m TELESCOPE OF THE SLOAN DIGITAL SKY SURVEY , 2005 .

[92]  S. Roweis,et al.  Modeling Complete Distributions with Incomplete Observations: The Velocity Ellipsoid from Hipparcos Data , 2005, astro-ph/0505057.

[93]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[94]  B. Gibson,et al.  The Emergence of the Thick Disk in a Cold Dark Matter Universe , 2004, astro-ph/0405306.

[95]  L. Staveley-Smith,et al.  A New Look at the Kinematics of Neutral Hydrogen in the Small Magellanic Cloud , 2003, astro-ph/0312223.

[96]  B. Gibson,et al.  Galactic Halo Stars in Phase Space: A Hint of Satellite Accretion? , 2003, astro-ph/0301596.

[97]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[98]  T. Beers,et al.  Kinematics of Metal-poor Stars in the Galaxy. III. Formation of the Stellar Halo and Thick Disk as Revealed from a Large Sample of Nonkinematically Selected Stars , 2000, astro-ph/0003087.

[99]  William E. Harris,et al.  A Catalog of Parameters for Globular Clusters in the Milky Way , 1996 .

[100]  D. Arnett Supernovae and Nucleosynthesis: An Investigation of the History of Matter, from the Big Bang to the Present , 1996 .

[101]  Carlos S. Frenk,et al.  Galaxy formation through hierarchical clustering , 1991 .

[102]  R. Zinn,et al.  Compositions of halo clusters and the formation of the galactic halo , 1978 .

[103]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[104]  A. Sandage,et al.  Evidence from the motions of old stars that the Galaxy collapsed. , 1962 .