Effects of Tillage and Cover Crops on Total Carbon and Nitrogen Stocks and Particle-Size Fractions of Soil Organic Matter under Onion Crop

Onion (Allium cepa L.) is a food crop of economic importance. In Brazil, the crop typically occurs in a conventional tillage system (CT), which favors the mineralization and decomposition of soil organic matter (SOM) and the loss of carbon (C) and nitrogen (N). On the other hand, the no-tillage vegetable system (NTVS) operates based on sustainable pillars and bypasses the adverse effects of CT. This study evaluated the total C and N stocks and particle-size fractions of SOM in NTVS with single and intercropped cover plants compared to vegetable crops under CT. The NTVS evaluated treatments were as follows: (1) spontaneous vegetation (SV); (2) black oats (BO); (3) rye (RY); (4) oilseed radish (OR); (5) RY + OR; and (6) BO + OR. A treatment under CT with millet cover, a no-tillage system with (NTS) millet + velvet + sunflower cover, and a forested area as the original condition was also evaluated. Soil samples were collected in 0–5, 5–10, and 10–30 cm layers. Stocks of total organic C (TOC), total N (TN), particulate OC (POC), particulate N (PN), mineral-associated OC (MAOC), and mineral-associated N (MN) were evaluated. The highest stocks of TOC, TN, POC, and NM were found in NTVS compared to CT, and RY + OR showed the best results. The NTVS showed higher TOC and TN stocks with grasses and cruciferous intercropped than NTVS with SV and CT. POC and PN stocks increased in areas with single and intercropped RY and OR treatments. MAOC and MN stocks were higher than forest in RY + OR intercrop in the topsoil layer. RY and OR intercrop efficiently added C and N to the soil under NTVS. The consortium of millet + velvet + sunflower in NTS showed higher TOC, TN, POC, and PN stocks compared to the other treatments (0–5 and 0–30 cm). In general, the intercrop of cover plants is ideal for obtaining the NTVS maximum potential, favoring several mechanisms between soil, plant, and atmosphere, resulting in improved soil quality, increased organic matter, and higher stocks of C and N.

[1]  G. Brunetto,et al.  Soil chemical properties and yield of onion crops grown for eight years under no-tillage system with cover crops , 2021 .

[2]  C. R. Soares,et al.  Soil Carbon, Glomalin, And Aggregation in Onion Crop Under No-Tillage with Cover Crops or Conventional Tillage Systems for Eight Years , 2021 .

[3]  G. Brunetto,et al.  Aggregation index, carbon, nitrogen, and natural abundance of 13C and 15N in soil aggregates and bulk soil cultivated with onion under crop successions and rotations , 2020 .

[4]  S. Daryanto,et al.  No-till is challenged: Complementary management is crucial to improve its environmental benefits under a changing climate , 2020 .

[5]  N. Bolan,et al.  Changes in soil-pores and wheat root geometry due to strategic tillage in a no-tillage cropping system , 2020 .

[6]  M. G. Pereira,et al.  Dynamics of soil aggregation and organic carbon fractions over 23 years of no-till management , 2020 .

[7]  L. B. Ferreira,et al.  Organic carbon and nitrogen contents and their fractions in soils with onion crops in different management systems , 2018 .

[8]  L. B. Ferreira,et al.  Carbon and nitrogen contents and aggregation index of soil cultivated with onion for seven years using crop successions and rotations , 2018, Soil and Tillage Research.

[9]  C. G. Moreira,et al.  Carbon and nitrogen stocks in the soil and humic substances of agricultural crops in the semi-arid region , 2018 .

[10]  B. Minasny,et al.  Limited effect of organic matter on soil available water capacity , 2018 .

[11]  E. Malosso,et al.  Dynamics of leaf litter and soil respiration in a complex multistrata agroforestry system, Pernambuco, Brazil , 2017, Environment, Development and Sustainability.

[12]  Ana Carolina Correia Almeida,et al.  ATRIBUTOS MICROBIOLÓGICOS DO SOLO SOB SISTEMAS INTEGRADOS DE PRODUÇÃO , 2016 .

[13]  G. Brunetto,et al.  Cover Crops Effects on Soil Chemical Properties and Onion Yield , 2016 .

[14]  Volnei Pauletti,et al.  Crescimento e absorção de nutrientes pela cultivar de cebola Bola Precoce , 2016 .

[15]  A. Loss,et al.  CARBONO ORGÂNICO TOTAL E AGREGAÇÃO DO SOLO EM SISTEMA DE PLANTIO DIRETO AGROECOLÓGICO E CONVENCIONAL DE CEBOLA , 2015 .

[16]  Márcio R. Nunes,et al.  Mitigation of clayey soil compaction managed under no-tillage , 2015 .

[17]  R. P. Martins,et al.  Mineralização do nitrogênio de plantas de cobertura, solteiras e consorciadas, depositadas sobre um solo com histórico de cultivo de cebola , 2014 .

[18]  Michael Mazurana,et al.  Estoque de carbono e atividade microbiana em sistema de plantio direto consolidado no Sul do Brasil , 2013 .

[19]  E. Miola,et al.  FITOMASSA E DECOMPOSIÇÃO DE RESÍDUOS DE PLANTAS DE COBERTURA PURAS E CONSORCIADAS , 2012 .

[20]  C. Silva,et al.  Estoque de serapilheira e atividade microbiana em solo sob sistemas agroflorestais , 2012 .

[21]  C. Hickmann,et al.  Estoque de carbono no solo e agregados em Argissolo sob diferentes manejos de longa duração , 2012 .

[22]  R. D. S. Nunes,et al.  Sistemas de manejo e os estoques de carbono e nitrogênio em latossolo de cerrado com a sucessão soja-milho , 2011 .

[23]  C. Bayer,et al.  Carbon stock and its compartments in a subtropical oxisol under long-term tillage and crop rotation systems , 2011 .

[24]  Jürgen K. Friedel,et al.  Impact of reduced tillage on soil organic carbon and nutrient budgets under organic farming , 2011, Renewable Agriculture and Food Systems.

[25]  B. F. Iwata,et al.  Atributos químicos e estoques de carbono em Latossolo sob plantio direto no cerrado do Piauí , 2010 .

[26]  N. Curi,et al.  Estoques de carbono e nitrogênio em solo sob florestas nativas e pastagens no bioma Pantanal , 2010 .

[27]  M. Pereira,et al.  Carbono, matéria orgânica leve e fósforo remanescente em diferentes sistemas de manejo do solo , 2010 .

[28]  J. M. Reichert,et al.  Recuperação da qualidade estrutural, pelo sistema plantio direto, de um Argissolo Vermelho , 2008 .

[29]  J. Mielniczuk,et al.  Estoque de carbono orgânico no solo e emissões de dióxido de carbono influenciadas por sistemas de manejo no sul do Brasil , 2008 .

[30]  Johan Six,et al.  The relationship between carbon input, aggregation, and soil organic carbon stabilization in sustainable cropping systems , 2005 .

[31]  P. L. Machado Carbono do solo e a mitigação da mudança climática global , 2005 .

[32]  E. F. Gama-Rodrigues,et al.  Carbono, nitrogênio e atividade da biomassa microbiana em diferentes estruturas de serapilheira de uma floresta natural , 2004 .

[33]  J. Mielniczuk,et al.  Armazenamento de carbono em frações lábeis da matéria orgânica de um Latossolo Vermelho sob plantio direto , 2004 .

[34]  J. Albuquerque,et al.  Aumento de matéria orgânica num latossolo bruno em plantio direto , 2004 .

[35]  J. Mielniczuk,et al.  Adição de carbono e nitrogênio e sua relação com os estoques no solo e com o rendimento do milho em sistemas de manejo , 2004 .

[36]  S. Urquiaga,et al.  Change in carbon and nitrogen stocks in soil under 13 years of conventional or zero tillage in southern Brazil , 2003 .

[37]  J. Albuquerque,et al.  Matéria orgânica e aumento da capacidade de troca de cátions em solo com argila de atividade baixa sob plantio direto , 2003 .

[38]  Flávio Luiz Foletto Eltz,et al.  Potencial de culturas de cobertura em acumular carbono e nitrogênio no solo no plantio direto e a melhoria da qualidade ambiental , 2001 .

[39]  Claire Chenu,et al.  Relationship of soil organic matter dynamics to physical protection and tillage , 2000 .

[40]  J. Mielniczuk,et al.  Culturas de cobertura, acúmulo de nitrogênio total no solo e produtividade de milho , 1999 .

[41]  D. Resck,et al.  Comportamento de diferentes sistemas de manejo como fonte ou depósito de carbono em relação à vegetação de Cerrado , 1999 .

[42]  P. Sollins,et al.  Stabilization and destabilization of soil organic matter: mechanisms and controls , 1996 .

[43]  E. T. Elliott,et al.  Particulate soil organic-matter changes across a grassland cultivation sequence , 1992 .

[44]  A. Cowie,et al.  Impact of agricultural management practices on the nutrient supply potential of soil organic matter under long-term farming systems , 2018 .

[45]  G. Brunetto,et al.  Carbon of humic substances in soil aggregates cultivated with onion under no-till and conventional tillage systems , 2018 .

[46]  G. Brunetto,et al.  Carbon and nitrogen content in granulometric fractions of organic matter in soil aggregates under no-tillage and conventional tillage planting systems for onions , 2018 .

[47]  J. F. Centurion,et al.  Alterações na estabilidade de agregados de latossolo e argissolo em função do manejo, na entrelinha da seringueira (Hevea brasiliensis) , 2014 .

[48]  Scott M. Swinton,et al.  Evaluating Cover Crops for Benefits, Costs and Performance within Cropping System Niches , 2005 .