A Computational Approach for Multi-Level Biological Complex Systems Analysis

Due to their intrinsic nature, biological entities are universally considered as complex systems. Over years, many different computational methods pertaining to the Systems Biology field, have been devised to unravel this complexity. However, when taken alone, most of times these methods are not able to provide a deep comprehension of structural, spatial and dynamical aspects of the systems under evaluation. For this reason, approaches exploiting different levels of analysis are today a hot research topic in different areas, such as the theoretical formalization of the method, and the development of computational tools for the integration of different modeling perspectives. In the present dissertation I developed a computational pipeline able to perform analyses exploiting, one after the other, the three main modeling frameworks for biological systems, gaining, from every level, a different type of information: i.e. identification of flux distributions and metabolic sub-phenotypes from the ensemble evolutionary FBA (a novel method inspired by Flux Balance Analysis); information on network structural properties and topological metrics from graph theory approaches; estimation of kinetic constants for mechanism-based modeling through the definition of an efficient version of the Particle Swarm Optimizer based on Fuzzy Logic. Moreover, I also redefined a network visualization strategy able to overlay flux values and topological metrics to network structure. In order to validate the proposed pipeline I also developed a “core model” of yeast metabolism from which I identified two ensembles of flux distributions (possible solutions) in agreement with the “Crabtree-positive” and “Crabtree-negative” metabolic phenotypes. Moreover, by means of a cluster analysis, devised methods were able to define groups inside each ensemble that I identified as putative “sub-phenotypes”. Lastly, I contributed to reconstruct four reduced metabolic “core models”, deriving from the Human Metabolic Atlas, and describing three tissue-specific cancer conditions and a reference state. From these models a relevant heterogeneity emerged between reference and cancer conditions in terms of metabolic flux values.

[1]  Carlos Gershenson Complexity: 5 Questions , 2008 .

[2]  Grégoire Nicolis,et al.  Foundations of Complex Systems: Emergence, Information and Prediction , 2012 .

[3]  R. Mahadevan,et al.  Ensemble Modeling of Cancer Metabolism , 2012, Front. Physio..

[4]  Adam M. Feist,et al.  Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli , 2013, Molecular systems biology.

[5]  Jing Zhao,et al.  Complex networks theory for analyzing metabolic networks , 2006, q-bio/0603015.

[6]  B. Palsson,et al.  Determining the Control Circuitry of Redox Metabolism at the Genome-Scale , 2014, PLoS genetics.

[7]  J. Bailey,et al.  Effects of spatiotemporal variations on metabolic control: approximate analysis using (log)linear kinetic models. , 1997, Biotechnology and bioengineering.

[8]  Daniel A. Beard,et al.  A Biophysical Model of the Mitochondrial Respiratory System and Oxidative Phosphorylation , 2005, PLoS Comput. Biol..

[9]  A. Aboussekhra,et al.  Homologous recombination is involved in transcription‐coupled repair of UV damage in Saccharomyces cerevisiae , 2005, The EMBO journal.

[10]  S. Kauffman A proposal for using the ensemble approach to understand genetic regulatory networks. , 2004, Journal of theoretical biology.

[11]  Raimond L. Winslow,et al.  A Reaction-Diffusion Model of ROS-Induced ROS Release in a Mitochondrial Network , 2010, PLoS Comput. Biol..

[12]  R. Mahadevan,et al.  The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. , 2003, Metabolic engineering.

[13]  J. Doyle,et al.  Metabolic syndrome and robustness tradeoffs. , 2004, Diabetes.

[14]  Nagasuma R. Chandra,et al.  Flux balance analysis of biological systems: applications and challenges , 2009, Briefings Bioinform..

[15]  M. Antoniewicz Dynamic metabolic flux analysis--tools for probing transient states of metabolic networks. , 2013, Current opinion in biotechnology.

[16]  Lisa Chong,et al.  Whole-istic Biology , 2002, Science.

[17]  I. Chou,et al.  Recent developments in parameter estimation and structure identification of biochemical and genomic systems. , 2009, Mathematical biosciences.

[18]  Michio Sugeno,et al.  Industrial Applications of Fuzzy Control , 1985 .

[19]  R. Deberardinis,et al.  Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis , 2007, Proceedings of the National Academy of Sciences.

[20]  Masahiro Okamoto,et al.  Kinetic modeling and sensitivity analysis of xylose metabolism in Lactococcus lactis IO-1. , 2009, Journal of bioscience and bioengineering.

[21]  Massimo Marchiori,et al.  Error and attacktolerance of complex network s , 2004 .

[22]  M. Roizen,et al.  Hallmarks of Cancer: The Next Generation , 2012 .

[23]  Melanie I. Stefan,et al.  BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models , 2010, BMC Systems Biology.

[24]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[25]  Stephen Gilmore,et al.  Sensitivity Analysis of Stochastic Models of Bistable Biochemical Reactions , 2008, SFM.

[26]  Angel Rubio,et al.  Computing the shortest elementary flux modes in genome-scale metabolic networks , 2009, Bioinform..

[27]  Natapol Pornputtapong,et al.  Reconstruction of Genome-Scale Active Metabolic Networks for 69 Human Cell Types and 16 Cancer Types Using INIT , 2012, PLoS Comput. Biol..

[28]  Marco S. Nobile,et al.  Computational Strategies for a System-Level Understanding of Metabolism , 2014, Metabolites.

[29]  I. Nookaew,et al.  Scheffersomyces stipitis: a comparative systems biology study with the Crabtree positive yeast Saccharomyces cerevisiae , 2012, Microbial Cell Factories.

[30]  Q. Hua,et al.  Reconstruction and analysis of the genome-scale metabolic network of Candida glabrata. , 2013, Molecular bioSystems.

[31]  B O Palsson,et al.  Flux-balance analysis of mitochondrial energy metabolism: consequences of systemic stoichiometric constraints. , 2001, American journal of physiology. Regulatory, integrative and comparative physiology.

[32]  U. Sauer,et al.  Multidimensional Optimality of Microbial Metabolism , 2012, Science.

[33]  Miguel Rocha,et al.  OptFlux: an open-source software platform for in silico metabolic engineering , 2010, BMC Systems Biology.

[34]  Jonathan R. Karr,et al.  A Whole-Cell Computational Model Predicts Phenotype from Genotype , 2012, Cell.

[35]  Ronan M. T. Fleming,et al.  Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0 , 2007, Nature Protocols.

[36]  L. Alberghina,et al.  Glucose metabolism and cell size in continuous cultures of Saccharomyces cerevisiae. , 2003, FEMS microbiology letters.

[37]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[38]  Joost Boele,et al.  FAME, the Flux Analysis and Modeling Environment , 2012, BMC Systems Biology.

[39]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[40]  Abdul-Majid Wazwaz,et al.  Partial Differential Equations , 2002 .

[41]  Sune Danø,et al.  Sustained oscillations in living cells , 1999, Nature.

[42]  E. H. Mamdani,et al.  Application of Fuzzy Logic to Approximate Reasoning Using Linguistic Synthesis , 1976, IEEE Transactions on Computers.

[43]  Julio R. Banga,et al.  Optimization in computational systems biology , 2008, BMC Systems Biology.

[44]  A. Barabasi,et al.  Hierarchical Organization of Modularity in Metabolic Networks , 2002, Science.

[45]  W. A. Scheffers,et al.  Transient-State Analysis of Metabolic Fluxes in Crabtree-Positive and Crabtree-Negative Yeasts , 1990, Applied and environmental microbiology.

[46]  Neil Swainston,et al.  Towards a genome-scale kinetic model of cellular metabolism , 2010, BMC Systems Biology.

[47]  Rick L. Stevens,et al.  High-throughput generation, optimization and analysis of genome-scale metabolic models , 2010, Nature Biotechnology.

[48]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[49]  E. Klipp,et al.  Superoxide production by cytochrome bc1 complex: a mathematical model. , 2014, Biochimica et biophysica acta.

[50]  Maksat Ashyraliyev,et al.  Systems biology: parameter estimation for biochemical models , 2009, The FEBS journal.

[51]  Richard Hansen,et al.  National Instruments LabVIEW: A Programming Environment for Laboratory Automation and Measurement , 2007 .

[52]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[53]  Age K Smilde,et al.  Reverse engineering of metabolic networks, a critical assessment. , 2011, Molecular bioSystems.

[54]  S. C. Johnson Hierarchical clustering schemes , 1967, Psychometrika.

[55]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[56]  Nachol Chaiyaratana,et al.  Co-operative co-evolutionary approach for flux balance in Bacillus subtilis , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[57]  Mathieu Cloutier,et al.  The control systems structures of energy metabolism , 2010, Journal of The Royal Society Interface.

[58]  Jens Nielsen,et al.  Evolutionary programming as a platform for in silico metabolic engineering , 2005, BMC Bioinformatics.

[59]  A. Levchenko Dynamical and integrative cell signaling: challenges for the new biology , 2003, Biotechnology and bioengineering.

[60]  A. Rezaee Jordehi,et al.  Parameter selection in particle swarm optimisation: a survey , 2013, J. Exp. Theor. Artif. Intell..

[61]  Intawat Nookaew,et al.  Mapping condition-dependent regulation of metabolism in yeast through genome-scale modeling , 2013, BMC Systems Biology.

[62]  Markus J. Herrgård,et al.  Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae. , 2006, Genome research.

[63]  Egils Stalidzans,et al.  Paint4Net: COBRA Toolbox extension for visualization of stoichiometric models of metabolism , 2012, Biosyst..

[64]  Jing Zhao,et al.  Hierarchical modularity of nested bow-ties in metabolic networks , 2006, BMC Bioinformatics.

[65]  Ines Thiele,et al.  rBioNet: A COBRA toolbox extension for reconstructing high-quality biochemical networks , 2011, Bioinform..

[66]  D. Gillespie Markov Processes: An Introduction for Physical Scientists , 1991 .

[67]  Matthias König,et al.  Fluxviz - Cytoscape plug-in for visualization of flux distributions in networks. , 2010, Genome informatics. International Conference on Genome Informatics.

[68]  L. Alberghina,et al.  Redox control of glutamine utilization in cancer , 2014, Cell Death and Disease.

[69]  D. Broomhead,et al.  A model of yeast glycolysis based on a consistent kinetic characterisation of all its enzymes , 2013, FEBS letters.

[70]  L. Alberghina,et al.  Systems Biology: Definitions and Perspectives , 2005 .

[71]  L. Cantley,et al.  Altered metabolism in cancer , 2010, BMC Biology.

[72]  B. Palsson,et al.  Elimination of thermodynamically infeasible loops in steady-state metabolic models. , 2011, Biophysical journal.

[73]  Igor Goryanin,et al.  Mathematical modeling of mitochondrial adenine nucleotide translocase. , 2006, Biophysical journal.

[74]  Rasmus Agren,et al.  Genome-scale modeling enables metabolic engineering of Saccharomyces cerevisiae for succinic acid production , 2013, Journal of Industrial Microbiology & Biotechnology.

[75]  Hans-Paul Schwefel,et al.  Evolution strategies – A comprehensive introduction , 2002, Natural Computing.

[76]  Sanjay Jain,et al.  Low degree metabolites explain essential reactions and enhance modularity in biological networks , 2005, BMC Bioinformatics.

[77]  Mario Latendresse,et al.  Efficiently gap-filling reaction networks , 2014, BMC Bioinformatics.

[78]  Xiangke Liao,et al.  SupraBiology 2014: Promoting UK-China collaboration on Systems Biology and High Performance Computing , 2015, Quantitative Biology.

[79]  Jens Nielsen,et al.  Sampling the Solution Space in Genome-Scale Metabolic Networks Reveals Transcriptional Regulation in Key Enzymes , 2010, PLoS Comput. Biol..

[80]  F. Tsai,et al.  Personalized medicine: A paradigm shift in healthcare , 2013 .

[81]  Michael P Snyder,et al.  High-throughput sequencing for biology and medicine , 2013, Molecular systems biology.

[82]  Alan Edelman,et al.  Julia: A Fast Dynamic Language for Technical Computing , 2012, ArXiv.

[83]  Osbaldo Resendis-Antonio,et al.  Functional Modules, Structural Topology, and Optimal Activity in Metabolic Networks , 2012, PLoS Comput. Biol..

[84]  Susumu Goto,et al.  Data, information, knowledge and principle: back to metabolism in KEGG , 2013, Nucleic Acids Res..

[85]  Peter D. Karp,et al.  Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology , 2015, Briefings Bioinform..

[86]  Adam M. Feist,et al.  Reconstruction of biochemical networks in microorganisms , 2009, Nature Reviews Microbiology.

[87]  L. Cantley,et al.  Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation , 2009, Science.

[88]  Kwang-Hyun Cho,et al.  Modeling and simulation of intracellular dynamics: choosing an appropriate framework , 2004, IEEE Transactions on NanoBioscience.

[89]  Masahiro Okamoto,et al.  Kinetic modeling and sensitivity analysis of acetone-butanol-ethanol production. , 2007, Journal of biotechnology.

[90]  Travis E. Oliphant,et al.  Python for Scientific Computing , 2007, Computing in Science & Engineering.

[91]  Laura A. Sullivan,et al.  Enhanced Heme Function and Mitochondrial Respiration Promote the Progression of Lung Cancer Cells , 2013, PloS one.

[92]  Barbara M. Bakker,et al.  Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. , 2000, European journal of biochemistry.

[93]  David R. Gilbert,et al.  Handling Uncertainty in Dynamic Models: The Pentose Phosphate Pathway in Trypanosoma brucei , 2013, PLoS Comput. Biol..

[94]  Andrea Saltelli,et al.  An effective screening design for sensitivity analysis of large models , 2007, Environ. Model. Softw..

[95]  中尾 光輝,et al.  KEGG(Kyoto Encyclopedia of Genes and Genomes)〔和文〕 (特集 ゲノム医学の現在と未来--基礎と臨床) -- (データベース) , 2000 .

[96]  R. Overbeek,et al.  Automated genome annotation and metabolic model reconstruction in the SEED and Model SEED. , 2013, Methods in molecular biology.

[97]  Markus J. Herrgård,et al.  A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology , 2008, Nature Biotechnology.

[98]  Bernhard O. Palsson,et al.  Optimizing genome-scale network reconstructions , 2014, Nature Biotechnology.

[99]  Robert LIN,et al.  NOTE ON FUZZY SETS , 2014 .

[100]  D. Broomhead,et al.  Something from nothing − bridging the gap between constraint‐based and kinetic modelling , 2007, The FEBS journal.

[101]  K. Yugi Dynamic Kinetic Modelling of Mitochondrial Energy Metabolism , 2013 .

[102]  J. Edwards,et al.  Systems Properties of the Haemophilus influenzaeRd Metabolic Genotype* , 1999, The Journal of Biological Chemistry.

[103]  Erwin P. Gianchandani,et al.  Flux balance analysis in the era of metabolomics , 2006, Briefings Bioinform..

[104]  K. Saetzler,et al.  Systems biology beyond networks: generating order from disorder through self-organization. , 2011, Seminars in cancer biology.

[105]  B. Palsson,et al.  Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. , 2000, Journal of theoretical biology.

[106]  G. Church,et al.  Modular epistasis in yeast metabolism , 2005, Nature Genetics.

[107]  P. Plevani,et al.  Exo1 competes with repair synthesis, converts NER intermediates to long ssDNA gaps, and promotes checkpoint activation. , 2010, Molecular cell.

[108]  A. Hopkins Network pharmacology: the next paradigm in drug discovery. , 2008, Nature chemical biology.

[109]  Hiroaki Kitano,et al.  The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models , 2003, Bioinform..

[110]  Jeffrey D Orth,et al.  What is flux balance analysis? , 2010, Nature Biotechnology.

[111]  Rainer Breitling,et al.  Dynamic Modelling under Uncertainty: The Case of Trypanosoma brucei Energy Metabolism , 2012, PLoS Comput. Biol..

[112]  Irina Kareva,et al.  Prisoner's Dilemma in Cancer Metabolism , 2011, PloS one.

[113]  Y. Rahmat-Samii,et al.  Boundary Conditions in Particle Swarm Optimization Revisited , 2007, IEEE Transactions on Antennas and Propagation.

[114]  B. Palsson,et al.  The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[115]  S. K. Dasika,et al.  Facilitated diffusion of myoglobin and creatine kinase and reaction–diffusion constraints of aerobic metabolism under steady‐state conditions in skeletal muscle , 2012, Biotechnology and bioengineering.

[116]  Michael L. Creech,et al.  Integration of biological networks and gene expression data using Cytoscape , 2007, Nature Protocols.

[117]  Linda R Petzold,et al.  Efficient step size selection for the tau-leaping simulation method. , 2006, The Journal of chemical physics.

[118]  M. Rigoulet,et al.  The Warburg and Crabtree effects: On the origin of cancer cell energy metabolism and of yeast glucose repression. , 2011, Biochimica et biophysica acta.

[119]  Matthew A. Hibbs,et al.  Visualization of omics data for systems biology , 2010, Nature Methods.

[120]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[121]  Yaneer Bar-Yam,et al.  Multiscale Complexity/Entropy , 2004, Adv. Complex Syst..

[122]  D. Gillespie A rigorous derivation of the chemical master equation , 1992 .

[123]  D. Gillespie A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions , 1976 .

[124]  Andreas Zell,et al.  Modeling metabolic networks in C . glutamicum : a comparison of rate laws in combination with various parameter optimization strategies , 2009 .

[125]  Ronan M. T. Fleming,et al.  A community-driven global reconstruction of human metabolism , 2013, Nature Biotechnology.

[126]  Riccardo Poli,et al.  Analysis of the publications on the applications of particle swarm optimisation , 2008 .

[127]  Norman W. Paton,et al.  KiPar, a tool for systematic information retrieval regarding parameters for kinetic modelling of yeast metabolic pathways , 2009, Bioinform..

[128]  Pierre Baldi,et al.  Modeling of Mitochondria Bioenergetics Using a Composable Chemiosmotic Energy Transduction Rate Law: Theory and Experimental Validation , 2011, PloS one.

[129]  Darrell Whitley,et al.  A genetic algorithm tutorial , 1994, Statistics and Computing.

[130]  Ralf Steuer,et al.  Flux Balance Analysis of Cyanobacterial Metabolism: The Metabolic Network of Synechocystis sp. PCC 6803 , 2013, PLoS Comput. Biol..

[131]  Matthew Suderman,et al.  Tools for visually exploring biological networks , 2007, Bioinform..

[132]  O. Reséndis-Antonio,et al.  Modeling Core Metabolism in Cancer Cells: Surveying the Topology Underlying the Warburg Effect , 2010, PloS one.

[133]  Ines Thiele,et al.  A compendium of inborn errors of metabolism mapped onto the human metabolic network. , 2012, Molecular bioSystems.

[134]  G. von Heijne,et al.  Tissue-based map of the human proteome , 2015, Science.

[135]  R. Deberardinis,et al.  The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. , 2008, Cell metabolism.

[136]  E. A. Boucher Stochastic approach to reaction and physico-chemical kinetics , 1974 .

[137]  L. Petzold Automatic Selection of Methods for Solving Stiff and Nonstiff Systems of Ordinary Differential Equations , 1983 .

[138]  H. Westerhoff,et al.  Why does yeast ferment? A flux balance analysis study. , 2010, Biochemical Society transactions.

[139]  Ying Zhang,et al.  HMDB: the Human Metabolome Database , 2007, Nucleic Acids Res..

[140]  Cornelia M Ulrich,et al.  A mathematical model of glutathione metabolism , 2008, Theoretical Biology and Medical Modelling.

[141]  J. Liao,et al.  Ensemble modeling of metabolic networks. , 2008, Biophysical journal.

[142]  Ethalinda K. S. Cannon,et al.  Maize Metabolic Network Construction and Transcriptome Analysis , 2013 .

[143]  M. Bennett,et al.  Measuring competitive fitness in dynamic environments. , 2013, The journal of physical chemistry. B.

[144]  B. Palsson,et al.  Regulation of gene expression in flux balance models of metabolism. , 2001, Journal of theoretical biology.

[145]  B. Palsson,et al.  Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110 , 1994, Applied and environmental microbiology.

[146]  Gilles Clermont,et al.  Bridging the gap between systems biology and medicine , 2009, Genome Medicine.

[147]  J. Nielsen,et al.  Metabolic model integration of the bibliome, genome, metabolome and reactome of Aspergillus niger , 2008, Molecular systems biology.

[148]  Andrea Saltelli,et al.  From screening to quantitative sensitivity analysis. A unified approach , 2011, Comput. Phys. Commun..

[149]  Peter. Simpson Introducing complex systems using the red-blue exercise , 2001 .

[150]  O. Reséndis-Antonio Filling Kinetic Gaps: Dynamic Modeling of Metabolism Where Detailed Kinetic Information Is Lacking , 2009, PloS one.

[151]  Vinay Satish Kumar,et al.  Optimization based automated curation of metabolic reconstructions , 2007, BMC Bioinformatics.

[152]  J. Förster,et al.  In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. , 2006, Metabolic engineering.

[153]  A. P. Sims,et al.  A kinetic study of the assimilation of [15N]-ammonia and the synthesis of amino acids in an exponentially growing culture of Candida utilis , 1964, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[154]  D. Gillespie Approximate accelerated stochastic simulation of chemically reacting systems , 2001 .

[155]  B. Palsson,et al.  The evolution of molecular biology into systems biology , 2004, Nature Biotechnology.

[156]  Mauro Birattari,et al.  Dm63 Heuristics for Combinatorial Optimization Ant Colony Optimization Exercises Outline Ant Colony Optimization: the Metaheuristic Application Examples Generalized Assignment Problem (gap) Connection between Aco and Other Metaheuristics Encodings Capacited Vehicle Routing Linear Ordering Ant Colony , 2022 .

[157]  R. H. De Deken,et al.  The Crabtree Effect: A Regulatory System in Yeast , 1966 .

[158]  I. Nookaew,et al.  Integration of clinical data with a genome-scale metabolic model of the human adipocyte , 2013, Molecular systems biology.

[159]  Masaru Tomita,et al.  Theoretical Biology and Medical Modelling , 2022 .

[160]  Adam M. Feist,et al.  The biomass objective function. , 2010, Current opinion in microbiology.

[161]  Jan Schellenberger,et al.  Use of Randomized Sampling for Analysis of Metabolic Networks* , 2009, Journal of Biological Chemistry.

[162]  Kristopher A. Hunt,et al.  Complete enumeration of elementary flux modes through scalable demand-based subnetwork definition , 2014, Bioinform..

[163]  Dorothea Heiss-Czedik,et al.  An Introduction to Genetic Algorithms. , 1997, Artificial Life.

[164]  A. Burgard,et al.  Optimization-based framework for inferring and testing hypothesized metabolic objective functions. , 2003, Biotechnology and bioengineering.

[165]  M. Newman Complex Systems: A Survey , 2011, 1112.1440.

[166]  Carmen G. Moles,et al.  Parameter estimation in biochemical pathways: a comparison of global optimization methods. , 2003, Genome research.

[167]  Leonardo Vanneschi,et al.  A new technique for dynamic size populations in genetic programming , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[168]  J. Doyle,et al.  Bow Ties, Metabolism and Disease , 2022 .

[169]  Andrzej M. Kierzek,et al.  SurreyFBA: a command line tool and graphics user interface for constraint-based modeling of genome-scale metabolic reaction networks , 2011, Bioinform..

[170]  J. Ferlay,et al.  Global estimates of cancer prevalence for 27 sites in the adult population in 2008 , 2013, International journal of cancer.

[171]  Gregery T. Buzzard,et al.  Modeling Mitochondrial Bioenergetics with Integrated Volume Dynamics , 2010, PLoS Comput. Biol..

[172]  Matteo Mori,et al.  Counting and Correcting Thermodynamically Infeasible Flux Cycles in Genome-Scale Metabolic Networks , 2013, Metabolites.

[173]  Jürgen Pahle,et al.  Biochemical simulations: stochastic, approximate stochastic and hybrid approaches , 2008, Briefings Bioinform..

[174]  Peter D. Karp,et al.  Eco Cyc: encyclopedia of Escherichia coli genes and metabolism , 1999, Nucleic Acids Res..

[175]  Ram Krishnamurthy,et al.  YMDB: the Yeast Metabolome Database , 2011, Nucleic Acids Res..

[176]  Yaneer Bar-Yam,et al.  Multiscale variety in complex systems , 2004, Complex..

[177]  R. Eberhart,et al.  Fuzzy adaptive particle swarm optimization , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[178]  Giancarlo Mauri,et al.  BioSimWare: A Software for the Modeling, Simulation and Analysis of Biological Systems , 2010, Int. Conf. on Membrane Computing.

[179]  T. Ross Fuzzy Logic with Engineering Applications , 1994 .

[180]  Meike T. Wortel,et al.  Lost in Transition: Start-Up of Glycolysis Yields Subpopulations of Nongrowing Cells , 2014, Science.

[181]  Nathan D. Price,et al.  Version 6 of the consensus yeast metabolic network refines biochemical coverage and improves model performance , 2013, Database J. Biol. Databases Curation.

[182]  Intawat Nookaew,et al.  The RAVEN Toolbox and Its Use for Generating a Genome-scale Metabolic Model for Penicillium chrysogenum , 2013, PLoS Comput. Biol..

[183]  Ravi Iyengar,et al.  Computational approaches for modeling regulatory cellular networks. , 2004, Trends in cell biology.

[184]  P. Swain,et al.  Stochastic Gene Expression in a Single Cell , 2002, Science.

[185]  H. Kitano Systems Biology: A Brief Overview , 2002, Science.

[186]  Peter D. Karp,et al.  HinCyc: A Knowledge Base of the Complete Genome and Metabolic Pathways of H. influenzae , 1996, ISMB.

[187]  C. Schilling,et al.  Flux coupling analysis of genome-scale metabolic network reconstructions. , 2004, Genome research.

[188]  B. Palsson,et al.  Constraining the metabolic genotype–phenotype relationship using a phylogeny of in silico methods , 2012, Nature Reviews Microbiology.

[189]  P. Karp,et al.  Computational prediction of human metabolic pathways from the complete human genome , 2004, Genome Biology.

[190]  Jason A. Papin,et al.  Applications of genome-scale metabolic reconstructions , 2009, Molecular systems biology.

[191]  T. Soga Cancer metabolism: Key players in metabolic reprogramming , 2013, Cancer science.

[192]  Andreas Hoppe,et al.  FASIMU: flexible software for flux-balance computation series in large metabolic networks , 2011, BMC Bioinformatics.

[193]  Attila Csikász-Nagy,et al.  In vivo and in silico analysis of PCNA ubiquitylation in the activation of the Post Replication Repair pathway in S. cerevisiae , 2013, BMC Systems Biology.

[194]  Yi Zhou,et al.  Catabolic efficiency of aerobic glycolysis: The Warburg effect revisited , 2010, BMC Systems Biology.

[195]  S. Bulik,et al.  Quantifying the Contribution of the Liver to Glucose Homeostasis: A Detailed Kinetic Model of Human Hepatic Glucose Metabolism , 2012, PLoS Comput. Biol..

[196]  S. Schuster,et al.  ON ELEMENTARY FLUX MODES IN BIOCHEMICAL REACTION SYSTEMS AT STEADY STATE , 1994 .

[197]  J. Piškur,et al.  Yeast “Make-Accumulate-Consume” Life Strategy Evolved as a Multi-Step Process That Predates the Whole Genome Duplication , 2013, PloS one.

[198]  O. Demin,et al.  The Edinburgh human metabolic network reconstruction and its functional analysis , 2007, Molecular systems biology.

[199]  F. Doyle,et al.  Dynamic flux balance analysis of diauxic growth in Escherichia coli. , 2002, Biophysical journal.

[200]  Giancarlo Mauri,et al.  Proactive Particles in Swarm Optimization: A self-tuning algorithm based on Fuzzy Logic , 2015, 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).

[201]  Giancarlo Mauri,et al.  An ensemble evolutionary constraint-based approach to understand the emergence of metabolic phenotypes , 2014, Natural Computing.

[202]  Erik K. Malm,et al.  A Human Protein Atlas for Normal and Cancer Tissues Based on Antibody Proteomics* , 2005, Molecular & Cellular Proteomics.

[203]  Pawan Dhar,et al.  Modeling and simulation of biological systems with stochasticity , 2004, Silico Biol..

[204]  Ajith Abraham,et al.  Turbulent Particle Swarm Optimization Using Fuzzy Parameter Tuning , 2009, Foundations of Computational Intelligence.

[205]  Max D. Morris,et al.  Factorial sampling plans for preliminary computational experiments , 1991 .

[206]  D. Fell,et al.  The small world inside large metabolic networks , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[207]  Barbara M. Bakker,et al.  Emergence of the silicon human and network targeting drugs. , 2012, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[208]  Wilhelm Huisinga,et al.  ADAPTIVE SIMULATION OF HYBRID STOCHASTIC AND DETERMINISTIC MODELS FOR BIOCHEMICAL SYSTEMS , 2005 .

[209]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[210]  Igor Goryanin,et al.  Compartmentalization of the Edinburgh Human Metabolic Network , 2010, BMC Bioinformatics.

[211]  David S. Wishart,et al.  HMDB: a knowledgebase for the human metabolome , 2008, Nucleic Acids Res..

[212]  J. Stelling Mathematical models in microbial systems biology. , 2004, Current opinion in microbiology.

[213]  R. J. Roberts PubMed Central: The GenBank of the published literature. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[214]  Ines Thiele,et al.  Computationally efficient flux variability analysis , 2010, BMC Bioinformatics.

[215]  Reinhard Schneider,et al.  A survey of visualization tools for biological network analysis , 2008, BioData Mining.

[216]  Sanjay Jain,et al.  Flux-based classification of reactions reveals a functional bow-tie organization of complex metabolic networks. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[217]  J. P. Barford,et al.  An Examination of the Crabtree Effect in Saccharomyces cerevisiae: the Role of Respiratory Adaptation , 1979 .

[218]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[219]  Ronan M. T. Fleming,et al.  Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0 , 2007, Nature Protocols.

[220]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[221]  A. Mogilner,et al.  Quantitative modeling in cell biology: what is it good for? , 2006, Developmental cell.

[222]  Etienne E. Kerre,et al.  Defuzzification: criteria and classification , 1999, Fuzzy Sets Syst..

[223]  J. Nielsen,et al.  Industrial Systems Biology of Saccharomyces cerevisiae Enables Novel Succinic Acid Cell Factory , 2013, PloS one.

[224]  Anne Auger,et al.  Impacts of invariance in search: When CMA-ES and PSO face ill-conditioned and non-separable problems , 2011, Appl. Soft Comput..

[225]  David S. Wishart,et al.  HMDB 3.0—The Human Metabolome Database in 2013 , 2012, Nucleic Acids Res..

[226]  M. Bianchi,et al.  Towards a metabolic therapy of cancer? , 2013, Acta bio-medica : Atenei Parmensis.

[227]  E. Lundberg,et al.  Towards a knowledge-based Human Protein Atlas , 2010, Nature Biotechnology.

[228]  M A Savageau,et al.  Biochemical systems theory: operational differences among variant representations and their significance. , 1991, Journal of theoretical biology.

[229]  L. Alberghina,et al.  A systems biology road map for the discovery of drugs targeting cancer cell metabolism. , 2014, Current pharmaceutical design.

[230]  James Kennedy,et al.  Particle swarm optimization , 1995, Proceedings of ICNN'95 - International Conference on Neural Networks.

[231]  Peter D. Karp,et al.  Construction and completion of flux balance models from pathway databases , 2012, Bioinform..

[232]  Jens Nielsen,et al.  Genome‐scale modeling of human metabolism – a systems biology approach , 2013, Biotechnology journal.

[233]  Ricard V Solé,et al.  When metabolism meets topology: Reconciling metabolite and reaction networks , 2010, BioEssays : news and reviews in molecular, cellular and developmental biology.

[234]  D. Fell,et al.  The small world of metabolism , 2000, Nature Biotechnology.

[235]  C. Gille,et al.  HepatoNet1: a comprehensive metabolic reconstruction of the human hepatocyte for the analysis of liver physiology , 2010, Molecular systems biology.

[236]  Jacques Ferlay,et al.  GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC Cancer Base No. 11 [Internet] , 2013 .

[237]  Yaneer Bar-Yam,et al.  Dynamics Of Complex Systems , 2019 .

[238]  Ralf Takors,et al.  Sensitivity analysis for the reduction of complex metabolism models , 2004 .

[239]  Monica L. Mo,et al.  Global reconstruction of the human metabolic network based on genomic and bibliomic data , 2007, Proceedings of the National Academy of Sciences.

[240]  Roded Sharan,et al.  Genome-Scale Metabolic Modeling Elucidates the Role of Proliferative Adaptation in Causing the Warburg Effect , 2011, PLoS Comput. Biol..

[241]  Dong-ping Tian,et al.  Fuzzy Particle Swarm Optimization Algorithm , 2009, 2009 International Joint Conference on Artificial Intelligence.

[242]  Gregor Papa,et al.  Parameter-less algorithm for evolutionary-based optimization , 2013, Comput. Optim. Appl..