INFERENCE AND UNCERTAINTY PROPAGATION OF ATOMISTICALLY-INFORMED CONTINUUM CONSTITUTIVE LAWS, PART 1: BAYESIAN INFERENCE OF FIXED MODEL FORMS

Uncertainty quantification techniques have the potential to play an important role in constructing constitutive relationships applicable to nanoscale physics. At these small scales, deviations from laws appropriate at the macroscale arise due to insufficient scale separation between the atomic and continuum length scales, as well as fluctuations due to thermal processes. In this work, we consider the problem of inferring the coefficients of an assumed constitutive model form using atomistic information and propagation of the associated uncertainty. A nanoscale heat transfer problem is taken as the model, and we use a polynomial chaos expansion to represent the thermal conductivity with a linear temperature dependence. A Bayesian inference method is developed to extract the coefficients in this expansion from molecular dynamics (MD) samples at prescribed temperatures. Importantly, the atomistic data are incompatible with the continuum model because of the finite probability of heat flowing in the opposite direction of the temperature gradient; we present a method to account for this in the model. The fidelity and uncertainty in these techniques are then examined. Validation is provided by comparing a continuum Fourier model against a larger all MD simulation representing the true solution.

[1]  O. Knio,et al.  Uncertainty quantification in MD simulations of concentration driven ionic flow through a silica nanopore. I. Sensitivity to physical parameters of the pore. , 2013, The Journal of chemical physics.

[2]  N. Cutland,et al.  On homogeneous chaos , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.

[3]  W. T. Martin,et al.  The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals , 1947 .

[4]  Daniel B. Rowe,et al.  Multivariate Bayesian Statistics: Models for Source Separation and Signal Unmixing , 2002 .

[5]  Richard D. Deveaux,et al.  Applied Smoothing Techniques for Data Analysis , 1999, Technometrics.

[6]  A. Eskandarian,et al.  A Multiscale Modeling of Multiple Physics , 2013 .

[7]  J. Bell Gaussian Hilbert spaces , 2015 .

[8]  H. Najm,et al.  A stochastic projection method for fluid flow II.: random process , 2002 .

[9]  Francesco Rizzi,et al.  Bayesian Inference of Atomic Diffusivity in a Binary Ni/Al System Based on Molecular Dynamics , 2011, Multiscale Model. Simul..

[10]  R. Jones,et al.  Uncertainty quantification in MD simulations of concentration driven ionic flow through a silica nanopore. II. Uncertain potential parameters. , 2013, The Journal of chemical physics.

[11]  Cosmin Safta,et al.  Uncertainty Quantification given Discontinuous Model Response and a Limited Number of Model Runs , 2012, SIAM J. Sci. Comput..

[12]  Ali Esmaili,et al.  Probability and Random Processes , 2005, Technometrics.

[13]  John B. Bell,et al.  A Hybrid Particle-Continuum Method for Hydrodynamics of Complex Fluids , 2009, Multiscale Model. Simul..

[14]  R. Hardy,et al.  Formulas for determining local properties in molecular‐dynamics simulations: Shock waves , 1982 .

[15]  Khachik Sargsyan,et al.  A Stochastic Multiscale Coupling Scheme to Account for Sampling Noise in Atomistic-to-Continuum Simulations , 2012, Multiscale Model. Simul..

[16]  M. Kim,et al.  Multiscale adjoint design sensitivity analysis of atomistic-continuum dynamic systems using bridging scale decomposition , 2013 .

[17]  Antoine Ferreira,et al.  A Survey of Modeling and Control Techniques for Micro- and Nanoelectromechanical Systems , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[18]  Luis A. Ricardez-Sandoval,et al.  Current challenges in the design and control of multiscale systems , 2011 .

[19]  E R Dobbs,et al.  Theory and properties of solid argon , 1957 .

[20]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[21]  J. Kirkwood,et al.  The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics , 1950 .

[22]  David L. McDowell,et al.  A concurrent scheme for passing dislocations from atomistic to continuum domains , 2012 .

[23]  Reese E. Jones,et al.  A material frame approach for evaluating continuum variables in atomistic simulations , 2008, J. Comput. Phys..

[24]  P Koumoutsakos,et al.  Control of density fluctuations in atomistic-continuum simulations of dense liquids. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Jerry Nedelman,et al.  Book review: “Bayesian Data Analysis,” Second Edition by A. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin Chapman & Hall/CRC, 2004 , 2005, Comput. Stat..

[26]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[27]  G. Crooks,et al.  Length of time's arrow. , 2008, Physical review letters.

[28]  Khachik Sargsyan,et al.  Spectral Representation and Reduced Order Modeling of the Dynamics of Stochastic Reaction Networks via Adaptive Data Partitioning , 2009, SIAM J. Sci. Comput..

[29]  O. L. Maître,et al.  Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .

[30]  Thorsten Gerber,et al.  Handbook Of Mathematical Functions , 2016 .

[31]  F. RIZZI,et al.  Uncertainty Quantification in MD Simulations. Part I: Forward Propagation , 2012, Multiscale Model. Simul..

[32]  Habib N. Najm,et al.  Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005, J. Comput. Phys..

[33]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[34]  A. Mohammad-Djafari Bayesian inference for inverse problems , 2001, physics/0110093.

[35]  Jean-François Molinari,et al.  A finite temperature bridging domain method for MD-FE coupling and application to a contact problem , 2012 .

[36]  Xiaobo Nie,et al.  Hybrid continuum-atomistic simulation of singular corner flow , 2004 .

[37]  R. Jones,et al.  An atomistic-to-continuum coupling method for heat transfer in solids , 2008 .

[38]  R. Jones,et al.  Application of a field-based method to spatially varying thermal transport problems in molecular dynamics , 2010 .

[39]  W. Michael Conklin,et al.  Multivariate Bayesian Statistics: Models for Source Separation and Signal Unmixing , 2005, Technometrics.

[40]  Doreen Eichel,et al.  Data Analysis A Bayesian Tutorial , 2016 .

[41]  A. Leach Molecular Modelling: Principles and Applications , 1996 .

[42]  R. Ghanem,et al.  A stochastic projection method for fluid flow. I: basic formulation , 2001 .

[43]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[44]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[45]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[46]  Gang Li,et al.  A multiscale component mode synthesis approach for dynamic analysis of nanostructures , 2012 .

[47]  Ellad B. Tadmor,et al.  A unified framework and performance benchmark of fourteen multiscale atomistic/continuum coupling methods , 2009 .